ମୂଲ୍ୟାୟନ କରିବା
-\frac{5}{2\left(z-2\right)^{2}}
w.r.t. z ର ପ୍ରଭେଦ ଦର୍ଶାନ୍ତୁ
\frac{5}{\left(z-2\right)^{3}}
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
\frac{\left(2z^{1}-4\right)\frac{\mathrm{d}}{\mathrm{d}z}(z^{1}+3)-\left(z^{1}+3\right)\frac{\mathrm{d}}{\mathrm{d}z}(2z^{1}-4)}{\left(2z^{1}-4\right)^{2}}
ଯେକୌଣସି ଦୁଇଟି ପୃଥକ୍ଯୋଗ୍ୟ ଫଙ୍କସନ୍ ପାଇଁ, ଦୁଇଟି ଫଙ୍କସନ୍ର କୋସେଣ୍ଟର ଡେରିଭେଟିଭ୍ ହେଉଛି ଲବର ଡେରିଭେଟିଭ୍ର ହର ଗୁଣା ବିଯୁକ୍ତ ହରର ଡେରିଭେଟିଭ୍ର ଲବ ଗୁଣା, ସମସ୍ତ ବର୍ଗଯୁକ୍ତ ହର ଦ୍ୱାରା ବିଭାଜିତ.
\frac{\left(2z^{1}-4\right)z^{1-1}-\left(z^{1}+3\right)\times 2z^{1-1}}{\left(2z^{1}-4\right)^{2}}
ଏକ ପଲିନୋମିଆଲ୍ର ଡେରିଭେଟିଭ୍ ହେଉଛି ଏହାର ପଦଗୁଡିକର ଡେରିଭେଟିଭ୍ଗୁଡିକର ଯୋଗଫଳ. କୌଣସି ସ୍ଥିରାଙ୍କ ସଂଖ୍ୟାର ଡେରିଭେଟିଭ୍ ହେଉଛି 0. ax^{n} ର ଡେରିଭେଟିଭ୍ ହେଉଛି nax^{n-1}.
\frac{\left(2z^{1}-4\right)z^{0}-\left(z^{1}+3\right)\times 2z^{0}}{\left(2z^{1}-4\right)^{2}}
ପାଟୀଗଣିତ କରନ୍ତୁ.
\frac{2z^{1}z^{0}-4z^{0}-\left(z^{1}\times 2z^{0}+3\times 2z^{0}\right)}{\left(2z^{1}-4\right)^{2}}
ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରିବା ବିସ୍ତାର କରନ୍ତୁ.
\frac{2z^{1}-4z^{0}-\left(2z^{1}+3\times 2z^{0}\right)}{\left(2z^{1}-4\right)^{2}}
ସମାନ ଆଧାର ବା ବେସ୍ର ପାୱାର୍ଡକୁ ଗୁଣନ କରିବାକୁ, ସେଗୁଡିକର ଘାତାଙ୍କଗୁଡିକ ଯୋଡନ୍ତୁ.
\frac{2z^{1}-4z^{0}-\left(2z^{1}+6z^{0}\right)}{\left(2z^{1}-4\right)^{2}}
ପାଟୀଗଣିତ କରନ୍ତୁ.
\frac{2z^{1}-4z^{0}-2z^{1}-6z^{0}}{\left(2z^{1}-4\right)^{2}}
ଅନାବଶ୍ୟକ ବନ୍ଧନୀଗୁଡିକ ଅପସାରଣ କରନ୍ତୁ.
\frac{\left(2-2\right)z^{1}+\left(-4-6\right)z^{0}}{\left(2z^{1}-4\right)^{2}}
ଏକାପରି ପଦଗୁଡିକୁ ସମ୍ମେଳନ କରନ୍ତୁ.
\frac{-10z^{0}}{\left(2z^{1}-4\right)^{2}}
2 ରୁ 2 ବିୟୋଗ କରନ୍ତୁ ଏବଂ -4 ରୁ 6 ବିୟୋଗ କରନ୍ତୁ.
\frac{-10z^{0}}{\left(2z-4\right)^{2}}
ଯେ କୌଣସି ପଦ t, t^{1}=t ପାଇଁ.
\frac{-10}{\left(2z-4\right)^{2}}
0, t^{0}=1 ବ୍ୟତୀତ ଯେ କୌଣସି ପଦ t ପାଇଁ.