Skip to main content
Microsoft Math Solver
Oplossen
Oefenen
Download
Solve
Practice
Onderwerpen
Pre-Algebra
Gemiddelde
Modus
Grootste Gemene Deler
Kleinste Gemene Veelvoud
Bewerkingsvolgorde
Breuken
Gemengde Breuken
Ontbinding in priemfactoren
Exponenten
Wortels
Algebra
Combineer Soortgelijke Termen
Een variabele oplossen
Factor
Uitbreiden
Breuken evalueren
Lineaire Vergelijkingen
Vierkantsvergelijkingen
Ongelijkheden
Stelsels van vergelijking
Matrices
Trigonometrie
Vereenvoudigen
Evalueren
Grafieken
Vergelijkingen oplossen
Analyse
Afgeleiden
Integralen
Limieten
Algebracalculator
Trigonometrische calculator
Calculuscalculator
Grafische Rekenmachine
Download
Onderwerpen
Pre-Algebra
Gemiddelde
Modus
Grootste Gemene Deler
Kleinste Gemene Veelvoud
Bewerkingsvolgorde
Breuken
Gemengde Breuken
Ontbinding in priemfactoren
Exponenten
Wortels
Algebra
Combineer Soortgelijke Termen
Een variabele oplossen
Factor
Uitbreiden
Breuken evalueren
Lineaire Vergelijkingen
Vierkantsvergelijkingen
Ongelijkheden
Stelsels van vergelijking
Matrices
Trigonometrie
Vereenvoudigen
Evalueren
Grafieken
Vergelijkingen oplossen
Analyse
Afgeleiden
Integralen
Limieten
Algebracalculator
Trigonometrische calculator
Calculuscalculator
Grafische Rekenmachine
m, o, d, e, left parenthesis, 2, comma, 4, comma, 5, comma, 3, comma, 2, comma, 4, comma, 5, comma, 6, comma, 4, comma, 3, comma, 2, right parenthesis
Oplossen
algebra
Trigonometrie
statistieken
analyse
matrices
variabelen
lijst
mode(2,4,5,3,2,4,5,6,4,3,2)
Evalueren
2,4
Quiz
5 opgaven vergelijkbaar met:
mode(2,4,5,3,2,4,5,6,4,3,2)
Vergelijkbare problemen van Web Search
mn+1 \equiv 0 \pmod{24} then : m+n \equiv 0 \pmod{24} using group theory
https://math.stackexchange.com/questions/2350421/mn1-equiv-0-pmod24-then-mn-equiv-0-pmod24-using-group-theory
You're trying to prove that if mn \equiv -1 \pmod{24} then m \equiv -n \pmod{24}. Let k = -n. Then you're trying to show that if -mk \equiv -1 \pmod{24} then m \equiv k \pmod{24}. Of ...
Can we ever have \Gamma \models \perp
https://math.stackexchange.com/questions/2639449/can-we-ever-have-gamma-models-perp
That's exactly right: "\Gamma\models\perp" is equivalent to "\Gamma has no model" (or "\Gamma is unsatisfiable").
Is this proof about Mersenne numbers acceptable?
https://math.stackexchange.com/questions/86429/is-this-proof-about-mersenne-numbers-acceptable
There is nothing incorrect, but there are a few things that could be changed. We only need p>2. From 2^p \equiv 2 \pmod {p} one should conclude M_p=2^p -1\equiv 1 \pmod{p} immediately, without ...
Solving system of linear congruence equations
https://math.stackexchange.com/questions/473711/solving-system-of-linear-congruence-equations
The way you express your congruences is rather unconventional. Given that 23d\equiv1\pmod{40}, 73d\equiv1\pmod{102}, and that 40=2^3\times5 and 102=2\times3\times17, it follows that 23d\equiv1\pmod5, ...
How to prove an element of a given structure is not definable?
https://math.stackexchange.com/questions/927915/how-to-prove-an-element-of-a-given-structure-is-not-definable
HINT: If x is a definable element in a structure \mathcal M, then any automorphism of \cal M must satisfy f(x)=x. To show that 2 is not definable, find an automorphism of \cal A such that ...
The deduction theorem according to AIMA
https://math.stackexchange.com/questions/13251/the-deduction-theorem-according-to-aima
In order for \alpha\Rightarrow\beta to be valid, it must hold in all models; for \alpha\Rightarrow\beta to not be valid, there must be a model where it is false. If there is a model where it is ...
Meer Items
Delen
Kopiëren
Gekopieerd naar klembord
Soortgelijke problemen
mode(1,2,3,2,1,2,3)
mode(1,2,3)
mode(20,34,32,35,45,32,45,32,32)
mode(2,4,5,3,2,4,5,6,4,3,2)
mode(10,11,10,12)
mode(1,1,2,2,3,3)
Terug naar boven