गुणन खण्ड
\left(z-6\right)\left(z-1\right)
मूल्याङ्कन गर्नुहोस्
\left(z-6\right)\left(z-1\right)
साझेदारी गर्नुहोस्
क्लिपबोर्डमा प्रतिलिपि गरियो
a+b=-7 ab=1\times 6=6
एक्सप्रेसनलाई समूहमा राखेर फ्याक्टर निकाल्नुहोस्। सर्वप्रथम, एक्सप्रेसनलाई z^{2}+az+bz+6 को रूपमा पुन: लेख्न आवश्यक छ। a र b पत्ता लगाउन, समाधान गर्नका लागि प्रणाली सेटअप गर्नुहोस्।
-1,-6 -2,-3
ab सकारात्मक भएको हुनाले, a र b को समान चिन्ह हुन्छ। a+b नकारात्मक भएको हुनाले, a र b दुबै नकारात्मक हुन्छन्। गुणनफल 6 दिने सबै पूर्ण संख्याहरूलाई सूचीबद्ध गर्नुहोस्।
-1-6=-7 -2-3=-5
प्रत्येक जोडीका लागि जोडफल गणना गर्नुहोस्।
a=-6 b=-1
समाधान त्यो जोडी हो जसले जोडफल -7 दिन्छ।
\left(z^{2}-6z\right)+\left(-z+6\right)
z^{2}-7z+6 लाई \left(z^{2}-6z\right)+\left(-z+6\right) को रूपमा पुन: लेख्नुहोस्।
z\left(z-6\right)-\left(z-6\right)
z लाई पहिलो र -1 लाई दोस्रो समूहमा सन्दर्भ लिनुहोस्।
\left(z-6\right)\left(z-1\right)
वितरक गुण प्रयोग गरेर समान टर्म z-6 खण्डिकरण गर्नुहोस्।
z^{2}-7z+6=0
क्वाड्रेटिक पोलिनोमियललाई ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) रूपान्तरणको प्रयोग गरेर खण्डिकरण गर्न सकिन्छ, जहाँ x_{1} र x_{2} क्वाड्रेटिक समिकरण ax^{2}+bx+c=0 को समाधान हो।
z=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4\times 6}}{2}
ax^{2}+bx+c=0 रूपका सबै समीकरणहरू वर्ग सूत्र: \frac{-b±\sqrt{b^{2}-4ac}}{2a} प्रयोग गरेर हल गर्न सकिन्छ। एउटा, ± जोड हँदा र अर्को घटाउ हुँदा वर्ग सूत्रले दुईवटा समाधानहरू दिन्छ।
z=\frac{-\left(-7\right)±\sqrt{49-4\times 6}}{2}
-7 वर्ग गर्नुहोस्।
z=\frac{-\left(-7\right)±\sqrt{49-24}}{2}
-4 लाई 6 पटक गुणन गर्नुहोस्।
z=\frac{-\left(-7\right)±\sqrt{25}}{2}
-24 मा 49 जोड्नुहोस्
z=\frac{-\left(-7\right)±5}{2}
25 को वर्गमूल निकाल्नुहोस्।
z=\frac{7±5}{2}
-7 विपरीत 7हो।
z=\frac{12}{2}
अब ± प्लस मानेर z=\frac{7±5}{2} समीकरणलाई हल गर्नुहोस्। 5 मा 7 जोड्नुहोस्
z=6
12 लाई 2 ले भाग गर्नुहोस्।
z=\frac{2}{2}
अब ± माइनस मानेर z=\frac{7±5}{2} समीकरणलाई हल गर्नुहोस्। 7 बाट 5 घटाउनुहोस्।
z=1
2 लाई 2 ले भाग गर्नुहोस्।
z^{2}-7z+6=\left(z-6\right)\left(z-1\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) को प्रयोग गरेर मौलिक अभिव्यञ्जकलाई खण्डिकरण गर्नुहोस्। x_{1} को लागि 6 र x_{2} को लागि 1 प्रतिस्थापित गर्नुहोस्।
उदाहरणहरू[सम्पादन गर्ने]
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिति
4 \sin \theta \cos \theta = 2 \sin \theta
रैखिक समीकरण
y = 3x + 4
अंकगणित
699 * 533
म्याट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालिक समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
भिन्नता
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमाहरू
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}