x को लागि हल गर्नुहोस्
\left\{\begin{matrix}x=-\frac{e^{y}-z-zy^{2}}{y\left(y^{2}+1\right)}\text{, }&y\neq 0\\x\in \mathrm{R}\text{, }&z=1\text{ and }y=0\end{matrix}\right.
साझेदारी गर्नुहोस्
क्लिपबोर्डमा प्रतिलिपि गरियो
z\left(y^{2}+1\right)=xy\left(y^{2}+1\right)+e^{y}
समीकरणको दुबैतिर y^{2}+1 ले गुणन गर्नुहोस्।
zy^{2}+z=xy\left(y^{2}+1\right)+e^{y}
z लाई y^{2}+1 ले गुणा गर्नको लागि वितरणमूलक गुणा प्रयोग गर्नुहोस्।
zy^{2}+z=xy^{3}+xy+e^{y}
xy लाई y^{2}+1 ले गुणा गर्नको लागि वितरणमूलक गुणा प्रयोग गर्नुहोस्।
xy^{3}+xy+e^{y}=zy^{2}+z
साइडहरू बदल्नुहोस् जसले गर्दा सबै चर पदहरू बायाँ साइडमा आउनेछन्।
xy^{3}+xy=zy^{2}+z-e^{y}
दुवै छेउबाट e^{y} घटाउनुहोस्।
\left(y^{3}+y\right)x=zy^{2}+z-e^{y}
x समावेश गर्ने सबै टर्महरू समायोजना गर्नुहोस्।
\frac{\left(y^{3}+y\right)x}{y^{3}+y}=\frac{zy^{2}+z-e^{y}}{y^{3}+y}
दुबैतिर y^{3}+y ले भाग गर्नुहोस्।
x=\frac{zy^{2}+z-e^{y}}{y^{3}+y}
y^{3}+y द्वारा भाग गर्नाले y^{3}+y द्वारा गुणा गरिएकोलाई फिर्ता गर्दछ।
x=\frac{zy^{2}+z-e^{y}}{y\left(y^{2}+1\right)}
zy^{2}+z-e^{y} लाई y^{3}+y ले भाग गर्नुहोस्।
उदाहरणहरू[सम्पादन गर्ने]
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिति
4 \sin \theta \cos \theta = 2 \sin \theta
रैखिक समीकरण
y = 3x + 4
अंकगणित
699 * 533
म्याट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालिक समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
भिन्नता
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमाहरू
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}