गुणन खण्ड
\left(y-\frac{1-\sqrt{113}}{2}\right)\left(y-\frac{\sqrt{113}+1}{2}\right)
मूल्याङ्कन गर्नुहोस्
y^{2}-y-28
ग्राफ
साझेदारी गर्नुहोस्
क्लिपबोर्डमा प्रतिलिपि गरियो
y^{2}-y-28=0
क्वाड्रेटिक पोलिनोमियललाई ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) रूपान्तरणको प्रयोग गरेर खण्डिकरण गर्न सकिन्छ, जहाँ x_{1} र x_{2} क्वाड्रेटिक समिकरण ax^{2}+bx+c=0 को समाधान हो।
y=\frac{-\left(-1\right)±\sqrt{1-4\left(-28\right)}}{2}
ax^{2}+bx+c=0 रूपका सबै समीकरणहरू वर्ग सूत्र: \frac{-b±\sqrt{b^{2}-4ac}}{2a} प्रयोग गरेर हल गर्न सकिन्छ। एउटा, ± जोड हँदा र अर्को घटाउ हुँदा वर्ग सूत्रले दुईवटा समाधानहरू दिन्छ।
y=\frac{-\left(-1\right)±\sqrt{1+112}}{2}
-4 लाई -28 पटक गुणन गर्नुहोस्।
y=\frac{-\left(-1\right)±\sqrt{113}}{2}
112 मा 1 जोड्नुहोस्
y=\frac{1±\sqrt{113}}{2}
-1 विपरीत 1हो।
y=\frac{\sqrt{113}+1}{2}
अब ± प्लस मानेर y=\frac{1±\sqrt{113}}{2} समीकरणलाई हल गर्नुहोस्। \sqrt{113} मा 1 जोड्नुहोस्
y=\frac{1-\sqrt{113}}{2}
अब ± माइनस मानेर y=\frac{1±\sqrt{113}}{2} समीकरणलाई हल गर्नुहोस्। 1 बाट \sqrt{113} घटाउनुहोस्।
y^{2}-y-28=\left(y-\frac{\sqrt{113}+1}{2}\right)\left(y-\frac{1-\sqrt{113}}{2}\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) को प्रयोग गरेर मौलिक अभिव्यञ्जकलाई खण्डिकरण गर्नुहोस्। x_{1} को लागि \frac{1+\sqrt{113}}{2} र x_{2} को लागि \frac{1-\sqrt{113}}{2} प्रतिस्थापित गर्नुहोस्।
उदाहरणहरू[सम्पादन गर्ने]
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिति
4 \sin \theta \cos \theta = 2 \sin \theta
रैखिक समीकरण
y = 3x + 4
अंकगणित
699 * 533
म्याट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालिक समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
भिन्नता
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमाहरू
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}