मुख्य सामग्रीमा स्किप गर्नुहोस्
Math Solver will be retired on July 7, 2025. Solve math equations with Math Assistant in OneNote to help you reach solutions quickly.
गुणन खण्ड
Tick mark Image
मूल्याङ्कन गर्नुहोस्
Tick mark Image
ग्राफ

वेब खोजीबाट समान समस्याहरू

साझेदारी गर्नुहोस्

a+b=-4 ab=1\left(-12\right)=-12
एक्सप्रेसनलाई समूहमा राखेर फ्याक्टर निकाल्नुहोस्। सर्वप्रथम, एक्सप्रेसनलाई x^{2}+ax+bx-12 को रूपमा पुन: लेख्न आवश्यक छ। a र b पत्ता लगाउन, समाधान गर्नका लागि प्रणाली सेटअप गर्नुहोस्।
1,-12 2,-6 3,-4
ab नकारात्मक भएको हुनाले, a र b को विपरीत चिन्ह हुन्छ। a+b नकारात्मक भएको हुनाले, नकारात्मक नम्बरको यथार्थ मान सकारात्मकको भन्दा धेरै हुन्छ। गुणनफल -12 दिने सबै पूर्ण संख्याहरूलाई सूचीबद्ध गर्नुहोस्।
1-12=-11 2-6=-4 3-4=-1
प्रत्येक जोडीका लागि जोडफल गणना गर्नुहोस्।
a=-6 b=2
समाधान त्यो जोडी हो जसले जोडफल -4 दिन्छ।
\left(x^{2}-6x\right)+\left(2x-12\right)
x^{2}-4x-12 लाई \left(x^{2}-6x\right)+\left(2x-12\right) को रूपमा पुन: लेख्नुहोस्।
x\left(x-6\right)+2\left(x-6\right)
x लाई पहिलो र 2 लाई दोस्रो समूहमा सन्दर्भ लिनुहोस्।
\left(x-6\right)\left(x+2\right)
वितरक गुण प्रयोग गरेर समान टर्म x-6 खण्डिकरण गर्नुहोस्।
x^{2}-4x-12=0
क्वाड्रेटिक पोलिनोमियललाई ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) रूपान्तरणको प्रयोग गरेर खण्डिकरण गर्न सकिन्छ, जहाँ x_{1} र x_{2} क्वाड्रेटिक समिकरण ax^{2}+bx+c=0 को समाधान हो।
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\left(-12\right)}}{2}
ax^{2}+bx+c=0 रूपका सबै समीकरणहरू वर्ग सूत्र: \frac{-b±\sqrt{b^{2}-4ac}}{2a} प्रयोग गरेर हल गर्न सकिन्छ। एउटा, ± जोड हँदा र अर्को घटाउ हुँदा वर्ग सूत्रले दुईवटा समाधानहरू दिन्छ।
x=\frac{-\left(-4\right)±\sqrt{16-4\left(-12\right)}}{2}
-4 वर्ग गर्नुहोस्।
x=\frac{-\left(-4\right)±\sqrt{16+48}}{2}
-4 लाई -12 पटक गुणन गर्नुहोस्।
x=\frac{-\left(-4\right)±\sqrt{64}}{2}
48 मा 16 जोड्नुहोस्
x=\frac{-\left(-4\right)±8}{2}
64 को वर्गमूल निकाल्नुहोस्।
x=\frac{4±8}{2}
-4 विपरीत 4हो।
x=\frac{12}{2}
अब ± प्लस मानेर x=\frac{4±8}{2} समीकरणलाई हल गर्नुहोस्। 8 मा 4 जोड्नुहोस्
x=6
12 लाई 2 ले भाग गर्नुहोस्।
x=-\frac{4}{2}
अब ± माइनस मानेर x=\frac{4±8}{2} समीकरणलाई हल गर्नुहोस्। 4 बाट 8 घटाउनुहोस्।
x=-2
-4 लाई 2 ले भाग गर्नुहोस्।
x^{2}-4x-12=\left(x-6\right)\left(x-\left(-2\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) को प्रयोग गरेर मौलिक अभिव्यञ्जकलाई खण्डिकरण गर्नुहोस्। x_{1} को लागि 6 र x_{2} को लागि -2 प्रतिस्थापित गर्नुहोस्।
x^{2}-4x-12=\left(x-6\right)\left(x+2\right)
p-\left(-q\right) देखि p+q को स्वरूपमा रहेका सबै अभिव्यञ्जकहरूलाई सरल गर्नुहोस्।