मुख्य सामग्रीमा स्किप गर्नुहोस्
x को लागि हल गर्नुहोस्
Tick mark Image
ग्राफ
प्रश्नोत्तरी
Polynomial

वेब खोजीबाट समान समस्याहरू

साझेदारी गर्नुहोस्

xx+x=2x
शून्यले गरिने भाग परिभाषित नभएकाले चर x 0 सँग बराबर हुन सक्दैन। समीकरणको दुबैतिर x ले गुणन गर्नुहोस्।
x^{2}+x=2x
x^{2} प्राप्त गर्नको लागि x र x गुणा गर्नुहोस्।
x^{2}+x-2x=0
दुवै छेउबाट 2x घटाउनुहोस्।
x^{2}-x=0
-x प्राप्त गर्नको लागि x र -2x लाई संयोजन गर्नुहोस्।
x\left(x-1\right)=0
x को गुणन खण्ड निकाल्नुहोस्।
x=0 x=1
समीकरणको समाधान पत्ता लगाउन, x=0 र x-1=0 को समाधान गर्नुहोस्।
x=1
चर x 0 सँग बराबर हुन सक्दैन।
xx+x=2x
शून्यले गरिने भाग परिभाषित नभएकाले चर x 0 सँग बराबर हुन सक्दैन। समीकरणको दुबैतिर x ले गुणन गर्नुहोस्।
x^{2}+x=2x
x^{2} प्राप्त गर्नको लागि x र x गुणा गर्नुहोस्।
x^{2}+x-2x=0
दुवै छेउबाट 2x घटाउनुहोस्।
x^{2}-x=0
-x प्राप्त गर्नको लागि x र -2x लाई संयोजन गर्नुहोस्।
x=\frac{-\left(-1\right)±\sqrt{1}}{2}
यो समीकरण मानक ढाँचामा छ: ax^{2}+bx+c=0। वर्ग सूत्र \frac{-b±\sqrt{b^{2}-4ac}}{2a} मा a लाई 1 ले, b लाई -1 ले र c लाई 0 ले प्रतिस्थापन गर्नुहोस्।
x=\frac{-\left(-1\right)±1}{2}
1 को वर्गमूल निकाल्नुहोस्।
x=\frac{1±1}{2}
-1 विपरीत 1हो।
x=\frac{2}{2}
अब ± प्लस मानेर x=\frac{1±1}{2} समीकरणलाई हल गर्नुहोस्। 1 मा 1 जोड्नुहोस्
x=1
2 लाई 2 ले भाग गर्नुहोस्।
x=\frac{0}{2}
अब ± माइनस मानेर x=\frac{1±1}{2} समीकरणलाई हल गर्नुहोस्। 1 बाट 1 घटाउनुहोस्।
x=0
0 लाई 2 ले भाग गर्नुहोस्।
x=1 x=0
अब समिकरण समाधान भएको छ।
x=1
चर x 0 सँग बराबर हुन सक्दैन।
xx+x=2x
शून्यले गरिने भाग परिभाषित नभएकाले चर x 0 सँग बराबर हुन सक्दैन। समीकरणको दुबैतिर x ले गुणन गर्नुहोस्।
x^{2}+x=2x
x^{2} प्राप्त गर्नको लागि x र x गुणा गर्नुहोस्।
x^{2}+x-2x=0
दुवै छेउबाट 2x घटाउनुहोस्।
x^{2}-x=0
-x प्राप्त गर्नको लागि x र -2x लाई संयोजन गर्नुहोस्।
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=\left(-\frac{1}{2}\right)^{2}
2 द्वारा -\frac{1}{2} प्राप्त गर्न x पदको गुणाङ्कलाई -1 ले भाग गर्नुहोस्। त्यसपछि -\frac{1}{2} को वर्गलाई समीकरणको दुबैतिर जोड्नुहोस्। यो चरणले समीकरणको बायाँ भागलाई पूर्ण वर्ग बनाउँछ।
x^{2}-x+\frac{1}{4}=\frac{1}{4}
भिन्नको अंश र हर दुबैलाई वर्ग गरेर -\frac{1}{2} लाई वर्ग गर्नुहोस्।
\left(x-\frac{1}{2}\right)^{2}=\frac{1}{4}
कारक x^{2}-x+\frac{1}{4}। सामान्यतया, यदि x^{2}+bx+c एक उचित वर्ग हो भने यसलाई \left(x+\frac{b}{2}\right)^{2}को रूपमा कारक गर्न सकिन्छ।
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{\frac{1}{4}}
समीकरणको दुबैतिरको वर्गमूल निकाल्नुहोस्।
x-\frac{1}{2}=\frac{1}{2} x-\frac{1}{2}=-\frac{1}{2}
सरल गर्नुहोस्।
x=1 x=0
समीकरणको दुबैतिर \frac{1}{2} जोड्नुहोस्।
x=1
चर x 0 सँग बराबर हुन सक्दैन।