मुख्य सामग्रीमा स्किप गर्नुहोस्
गुणन खण्ड
Tick mark Image
मूल्याङ्कन गर्नुहोस्
Tick mark Image
ग्राफ

वेब खोजीबाट समान समस्याहरू

साझेदारी गर्नुहोस्

\left(x^{4}-1\right)\left(x^{4}-1\right)
x^{k}+m को रूपमा एउटा खण्ड पत्ता लगाउनुहोस्, जहाँ x^{k} ले सबैभन्दा उच्च घाताङ्क x^{8} र m भएको 1 एकपदीय फ्याक्टर भाग गर्छ। उक्त एउटा फ्याक्टर x^{4}-1 हो। यो खण्डले भाग गरेर बहुपदीय फ्याक्टरको खण्डिकरण गर्नुहोस्।
\left(x^{2}-1\right)\left(x^{2}+1\right)
मानौं x^{4}-1। x^{4}-1 लाई \left(x^{2}\right)^{2}-1^{2} को रूपमा पुन: लेख्नुहोस्। वर्गहरूबीचको भिन्नता निम्न नियमको प्रयोग गरेर खण्डिकरण गर्न सकिन्छ: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right)।
\left(x-1\right)\left(x+1\right)
मानौं x^{2}-1। x^{2}-1 लाई x^{2}-1^{2} को रूपमा पुन: लेख्नुहोस्। वर्गहरूबीचको भिन्नता निम्न नियमको प्रयोग गरेर खण्डिकरण गर्न सकिन्छ: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right)।
\left(x^{2}-1\right)\left(x^{2}+1\right)
मानौं x^{4}-1। x^{4}-1 लाई \left(x^{2}\right)^{2}-1^{2} को रूपमा पुन: लेख्नुहोस्। वर्गहरूबीचको भिन्नता निम्न नियमको प्रयोग गरेर खण्डिकरण गर्न सकिन्छ: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right)।
\left(x-1\right)\left(x+1\right)
मानौं x^{2}-1। x^{2}-1 लाई x^{2}-1^{2} को रूपमा पुन: लेख्नुहोस्। वर्गहरूबीचको भिन्नता निम्न नियमको प्रयोग गरेर खण्डिकरण गर्न सकिन्छ: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right)।
\left(x-1\right)^{2}\left(x+1\right)^{2}\left(x^{2}+1\right)^{2}
पूर्णतया खण्डीकरण गरिएको अभिव्यञ्जक पुन: लेख्नुहोस्। बहुपदीय x^{2}+1 का कुनै पनि संयुक्तिक मूलहरू नभएकाले यसको खण्डिकरण गरिएन।