मुख्य सामग्रीमा स्किप गर्नुहोस्
गुणन खण्ड
Tick mark Image
मूल्याङ्कन गर्नुहोस्
Tick mark Image
ग्राफ

वेब खोजीबाट समान समस्याहरू

साझेदारी गर्नुहोस्

\left(x-3\right)\left(x^{2}-x-2\right)
संयुक्तिक मूलको सिद्धान्त अनुसार, बहुपरीयका सबै संयुक्तिक मूलहरू \frac{p}{q} को रूपमा हुन्छन्, जहाँ p ले स्थिर राशी 6 लाई भाग गर्छ र q ले प्रमुख गुणांक 1 लाई भाग गर्छ। उक्त एउटा खण्ड 3 हो। x-3 ले भाग गरेर बहुपदीय खण्डलाई खण्डीकरण गर्नुहोस्।
a+b=-1 ab=1\left(-2\right)=-2
मानौं x^{2}-x-2। एक्सप्रेसनलाई समूहमा राखेर फ्याक्टर निकाल्नुहोस्। सर्वप्रथम, एक्सप्रेसनलाई x^{2}+ax+bx-2 को रूपमा पुन: लेख्न आवश्यक छ। a र b पत्ता लगाउन, समाधान गर्नका लागि प्रणाली सेटअप गर्नुहोस्।
a=-2 b=1
ab नकारात्मक भएको हुनाले, a र b को विपरीत चिन्ह हुन्छ। a+b नकारात्मक भएको हुनाले, नकारात्मक नम्बरको यथार्थ मान सकारात्मकको भन्दा धेरै हुन्छ। त्यस्तो मात्र जोडी प्रणाली समाधान हो।
\left(x^{2}-2x\right)+\left(x-2\right)
x^{2}-x-2 लाई \left(x^{2}-2x\right)+\left(x-2\right) को रूपमा पुन: लेख्नुहोस्।
x\left(x-2\right)+x-2
x^{2}-2x मा x खण्डिकरण गर्नुहोस्।
\left(x-2\right)\left(x+1\right)
वितरक गुण प्रयोग गरेर समान टर्म x-2 खण्डिकरण गर्नुहोस्।
\left(x-3\right)\left(x-2\right)\left(x+1\right)
पूर्णतया खण्डीकरण गरिएको अभिव्यञ्जक पुन: लेख्नुहोस्।