मुख्य सामग्रीमा स्किप गर्नुहोस्
x को लागि हल गर्नुहोस् (complex solution)
Tick mark Image
x को लागि हल गर्नुहोस्
Tick mark Image
ग्राफ
प्रश्नोत्तरी
Polynomial

वेब खोजीबाट समान समस्याहरू

साझेदारी गर्नुहोस्

x^{3}-64=0
दुवै छेउबाट 64 घटाउनुहोस्।
±64,±32,±16,±8,±4,±2,±1
संयुक्तिक मूलको सिद्धान्त अनुसार, बहुपरीयका सबै संयुक्तिक मूलहरू \frac{p}{q} को रूपमा हुन्छन्, जहाँ p ले स्थिर राशी -64 लाई भाग गर्छ र q ले प्रमुख गुणांक 1 लाई भाग गर्छ। सबै सम्भावित खण्डहरू \frac{p}{q} सूचीबद्ध गर्नुहोस्।
x=4
सबै पूर्ण संख्याहरू प्रयोग गरेर सबैभन्दा सानो निरपेक्ष मानद्वारा सुरु हुने वर्गमूल फेला पार्नुहोस्। यदि पूर्ण संख्याका कुनै पनि वर्गमूल फेला पर्दैनन् भने, भिन्नहरू प्रयोग गर्नुहोस्।
x^{2}+4x+16=0
खण्ड सम्बन्धी सिद्धान्त अनुसार, x-k हरेक मूल k को बहुपदीय खण्ड हो। x^{2}+4x+16 प्राप्त गर्नको लागि x^{3}-64 लाई x-4 द्वारा भाग गर्नुहोस्। परिणाम 0 बराबर आउने गरी समीकरणलाई समाधान गर्नुहोस्।
x=\frac{-4±\sqrt{4^{2}-4\times 1\times 16}}{2}
ax^{2}+bx+c=0 ढाँचाका सबै समीकरणहरूलाई क्वाड्रेटिक सूत्र प्रयोग गरी समाधन गर्न सकिन्छ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। क्वाड्रेटिक सूत्रमा a लाई 1 ले, b लाई 4 ले, र c लाई 16 ले प्रतिस्थापन गर्नुहोस्।
x=\frac{-4±\sqrt{-48}}{2}
हिसाब गर्नुहोस्।
x=-2i\sqrt{3}-2 x=-2+2i\sqrt{3}
± प्लस र ± माइनस हुँदा समीकरण x^{2}+4x+16=0 लाई समाधान गर्नुहोस्।
x=4 x=-2i\sqrt{3}-2 x=-2+2i\sqrt{3}
फेला परेका सबै समाधानहरूलाई सूचीबद्ध गर्नुहोस्।
x^{3}-64=0
दुवै छेउबाट 64 घटाउनुहोस्।
±64,±32,±16,±8,±4,±2,±1
संयुक्तिक मूलको सिद्धान्त अनुसार, बहुपरीयका सबै संयुक्तिक मूलहरू \frac{p}{q} को रूपमा हुन्छन्, जहाँ p ले स्थिर राशी -64 लाई भाग गर्छ र q ले प्रमुख गुणांक 1 लाई भाग गर्छ। सबै सम्भावित खण्डहरू \frac{p}{q} सूचीबद्ध गर्नुहोस्।
x=4
सबै पूर्ण संख्याहरू प्रयोग गरेर सबैभन्दा सानो निरपेक्ष मानद्वारा सुरु हुने वर्गमूल फेला पार्नुहोस्। यदि पूर्ण संख्याका कुनै पनि वर्गमूल फेला पर्दैनन् भने, भिन्नहरू प्रयोग गर्नुहोस्।
x^{2}+4x+16=0
खण्ड सम्बन्धी सिद्धान्त अनुसार, x-k हरेक मूल k को बहुपदीय खण्ड हो। x^{2}+4x+16 प्राप्त गर्नको लागि x^{3}-64 लाई x-4 द्वारा भाग गर्नुहोस्। परिणाम 0 बराबर आउने गरी समीकरणलाई समाधान गर्नुहोस्।
x=\frac{-4±\sqrt{4^{2}-4\times 1\times 16}}{2}
ax^{2}+bx+c=0 ढाँचाका सबै समीकरणहरूलाई क्वाड्रेटिक सूत्र प्रयोग गरी समाधन गर्न सकिन्छ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। क्वाड्रेटिक सूत्रमा a लाई 1 ले, b लाई 4 ले, र c लाई 16 ले प्रतिस्थापन गर्नुहोस्।
x=\frac{-4±\sqrt{-48}}{2}
हिसाब गर्नुहोस्।
x\in \emptyset
ऋणात्मक सङ्ख्याको वर्गमूल वास्तविक फाँटमा निर्धारित नगरिएको हुनाले, यसको कुनै समाधान छैन।
x=4
फेला परेका सबै समाधानहरूलाई सूचीबद्ध गर्नुहोस्।