मुख्य सामग्रीमा स्किप गर्नुहोस्
x को लागि हल गर्नुहोस् (complex solution)
Tick mark Image
x को लागि हल गर्नुहोस्
Tick mark Image
ग्राफ

वेब खोजीबाट समान समस्याहरू

साझेदारी गर्नुहोस्

x^{3}-3375=0
दुवै छेउबाट 3375 घटाउनुहोस्।
±3375,±1125,±675,±375,±225,±135,±125,±75,±45,±27,±25,±15,±9,±5,±3,±1
संयुक्तिक मूलको सिद्धान्त अनुसार, बहुपरीयका सबै संयुक्तिक मूलहरू \frac{p}{q} को रूपमा हुन्छन्, जहाँ p ले स्थिर राशी -3375 लाई भाग गर्छ र q ले प्रमुख गुणांक 1 लाई भाग गर्छ। सबै सम्भावित खण्डहरू \frac{p}{q} सूचीबद्ध गर्नुहोस्।
x=15
सबै पूर्ण संख्याहरू प्रयोग गरेर सबैभन्दा सानो निरपेक्ष मानद्वारा सुरु हुने वर्गमूल फेला पार्नुहोस्। यदि पूर्ण संख्याका कुनै पनि वर्गमूल फेला पर्दैनन् भने, भिन्नहरू प्रयोग गर्नुहोस्।
x^{2}+15x+225=0
खण्ड सम्बन्धी सिद्धान्त अनुसार, x-k हरेक मूल k को बहुपदीय खण्ड हो। x^{2}+15x+225 प्राप्त गर्नको लागि x^{3}-3375 लाई x-15 द्वारा भाग गर्नुहोस्। परिणाम 0 बराबर आउने गरी समीकरणलाई समाधान गर्नुहोस्।
x=\frac{-15±\sqrt{15^{2}-4\times 1\times 225}}{2}
ax^{2}+bx+c=0 ढाँचाका सबै समीकरणहरूलाई क्वाड्रेटिक सूत्र प्रयोग गरी समाधन गर्न सकिन्छ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। क्वाड्रेटिक सूत्रमा a लाई 1 ले, b लाई 15 ले, र c लाई 225 ले प्रतिस्थापन गर्नुहोस्।
x=\frac{-15±\sqrt{-675}}{2}
हिसाब गर्नुहोस्।
x=\frac{-15i\sqrt{3}-15}{2} x=\frac{-15+15i\sqrt{3}}{2}
± प्लस र ± माइनस हुँदा समीकरण x^{2}+15x+225=0 लाई समाधान गर्नुहोस्।
x=15 x=\frac{-15i\sqrt{3}-15}{2} x=\frac{-15+15i\sqrt{3}}{2}
फेला परेका सबै समाधानहरूलाई सूचीबद्ध गर्नुहोस्।
x^{3}-3375=0
दुवै छेउबाट 3375 घटाउनुहोस्।
±3375,±1125,±675,±375,±225,±135,±125,±75,±45,±27,±25,±15,±9,±5,±3,±1
संयुक्तिक मूलको सिद्धान्त अनुसार, बहुपरीयका सबै संयुक्तिक मूलहरू \frac{p}{q} को रूपमा हुन्छन्, जहाँ p ले स्थिर राशी -3375 लाई भाग गर्छ र q ले प्रमुख गुणांक 1 लाई भाग गर्छ। सबै सम्भावित खण्डहरू \frac{p}{q} सूचीबद्ध गर्नुहोस्।
x=15
सबै पूर्ण संख्याहरू प्रयोग गरेर सबैभन्दा सानो निरपेक्ष मानद्वारा सुरु हुने वर्गमूल फेला पार्नुहोस्। यदि पूर्ण संख्याका कुनै पनि वर्गमूल फेला पर्दैनन् भने, भिन्नहरू प्रयोग गर्नुहोस्।
x^{2}+15x+225=0
खण्ड सम्बन्धी सिद्धान्त अनुसार, x-k हरेक मूल k को बहुपदीय खण्ड हो। x^{2}+15x+225 प्राप्त गर्नको लागि x^{3}-3375 लाई x-15 द्वारा भाग गर्नुहोस्। परिणाम 0 बराबर आउने गरी समीकरणलाई समाधान गर्नुहोस्।
x=\frac{-15±\sqrt{15^{2}-4\times 1\times 225}}{2}
ax^{2}+bx+c=0 ढाँचाका सबै समीकरणहरूलाई क्वाड्रेटिक सूत्र प्रयोग गरी समाधन गर्न सकिन्छ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। क्वाड्रेटिक सूत्रमा a लाई 1 ले, b लाई 15 ले, र c लाई 225 ले प्रतिस्थापन गर्नुहोस्।
x=\frac{-15±\sqrt{-675}}{2}
हिसाब गर्नुहोस्।
x\in \emptyset
ऋणात्मक सङ्ख्याको वर्गमूल वास्तविक फाँटमा निर्धारित नगरिएको हुनाले, यसको कुनै समाधान छैन।
x=15
फेला परेका सबै समाधानहरूलाई सूचीबद्ध गर्नुहोस्।