मुख्य सामग्रीमा स्किप गर्नुहोस्
x को लागि हल गर्नुहोस्
Tick mark Image
ग्राफ

वेब खोजीबाट समान समस्याहरू

साझेदारी गर्नुहोस्

\left(x-1\right)x^{2}=x-1
शून्यले गरिने भाग परिभाषित नभएकाले चर x 1 सँग बराबर हुन सक्दैन। समीकरणको दुबैतिर x-1 ले गुणन गर्नुहोस्।
x^{3}-x^{2}=x-1
x-1 लाई x^{2} ले गुणा गर्नको लागि वितरणमूलक गुणा प्रयोग गर्नुहोस्।
x^{3}-x^{2}-x=-1
दुवै छेउबाट x घटाउनुहोस्।
x^{3}-x^{2}-x+1=0
दुबै छेउहरूमा 1 थप्नुहोस्।
±1
संयुक्तिक मूलको सिद्धान्त अनुसार, बहुपरीयका सबै संयुक्तिक मूलहरू \frac{p}{q} को रूपमा हुन्छन्, जहाँ p ले स्थिर राशी 1 लाई भाग गर्छ र q ले प्रमुख गुणांक 1 लाई भाग गर्छ। सबै सम्भावित खण्डहरू \frac{p}{q} सूचीबद्ध गर्नुहोस्।
x=1
सबै पूर्ण संख्याहरू प्रयोग गरेर सबैभन्दा सानो निरपेक्ष मानद्वारा सुरु हुने वर्गमूल फेला पार्नुहोस्। यदि पूर्ण संख्याका कुनै पनि वर्गमूल फेला पर्दैनन् भने, भिन्नहरू प्रयोग गर्नुहोस्।
x^{2}-1=0
खण्ड सम्बन्धी सिद्धान्त अनुसार, x-k हरेक मूल k को बहुपदीय खण्ड हो। x^{2}-1 प्राप्त गर्नको लागि x^{3}-x^{2}-x+1 लाई x-1 द्वारा भाग गर्नुहोस्। परिणाम 0 बराबर आउने गरी समीकरणलाई समाधान गर्नुहोस्।
x=\frac{0±\sqrt{0^{2}-4\times 1\left(-1\right)}}{2}
ax^{2}+bx+c=0 ढाँचाका सबै समीकरणहरूलाई क्वाड्रेटिक सूत्र प्रयोग गरी समाधन गर्न सकिन्छ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। क्वाड्रेटिक सूत्रमा a लाई 1 ले, b लाई 0 ले, र c लाई -1 ले प्रतिस्थापन गर्नुहोस्।
x=\frac{0±2}{2}
हिसाब गर्नुहोस्।
x=-1 x=1
± प्लस र ± माइनस हुँदा समीकरण x^{2}-1=0 लाई समाधान गर्नुहोस्।
x=-1
चर राशीहरू जुन जुन मानसँग बराबर हुन सक्दैनन् ती मानहरू हटाउनुहोस्।
x=1 x=-1
फेला परेका सबै समाधानहरूलाई सूचीबद्ध गर्नुहोस्।
x=-1
चर x 1 सँग बराबर हुन सक्दैन।