x को लागि हल गर्नुहोस्
x=-7
x=6
ग्राफ
साझेदारी गर्नुहोस्
क्लिपबोर्डमा प्रतिलिपि गरियो
a+b=1 ab=-42
समीकरणको समाधान गर्न, x^{2}+x-42 लाई फर्मूला x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) प्रयोग गरी फ्याक्टर निकाल्नुहोस्। a र b पत्ता लगाउन, समाधान गर्नका लागि प्रणाली सेटअप गर्नुहोस्।
-1,42 -2,21 -3,14 -6,7
ab नकारात्मक भएको हुनाले, a र b को विपरीत चिन्ह हुन्छ। a+b सकारात्मक भएको हुनाले, सकारात्मक नम्बरको यथार्थ मान नकारात्मकको भन्दा धेरै हुन्छ। गुणनफल -42 दिने सबै पूर्ण संख्याहरूलाई सूचीबद्ध गर्नुहोस्।
-1+42=41 -2+21=19 -3+14=11 -6+7=1
प्रत्येक जोडीका लागि जोडफल गणना गर्नुहोस्।
a=-6 b=7
समाधान त्यो जोडी हो जसले जोडफल 1 दिन्छ।
\left(x-6\right)\left(x+7\right)
प्राप्त मानहरूको प्रयोग गरेर खण्डीकरण गरिएको अभिव्यञ्जक \left(x+a\right)\left(x+b\right) लाई पुन: लेख्नुहोस्।
x=6 x=-7
समीकरणको समाधान पत्ता लगाउन, x-6=0 र x+7=0 को समाधान गर्नुहोस्।
a+b=1 ab=1\left(-42\right)=-42
समीकरणको समाधान गर्न, बायाँ भागलाई समूहमा राखेर फ्याक्टर निकाल्नुहोस्। सर्वप्रथम, बायाँ भागलाई x^{2}+ax+bx-42 को रूपमा पुन: लेख्न आवश्यक हुन्छ। a र b पत्ता लगाउन, समाधान गर्नका लागि प्रणाली सेटअप गर्नुहोस्।
-1,42 -2,21 -3,14 -6,7
ab नकारात्मक भएको हुनाले, a र b को विपरीत चिन्ह हुन्छ। a+b सकारात्मक भएको हुनाले, सकारात्मक नम्बरको यथार्थ मान नकारात्मकको भन्दा धेरै हुन्छ। गुणनफल -42 दिने सबै पूर्ण संख्याहरूलाई सूचीबद्ध गर्नुहोस्।
-1+42=41 -2+21=19 -3+14=11 -6+7=1
प्रत्येक जोडीका लागि जोडफल गणना गर्नुहोस्।
a=-6 b=7
समाधान त्यो जोडी हो जसले जोडफल 1 दिन्छ।
\left(x^{2}-6x\right)+\left(7x-42\right)
x^{2}+x-42 लाई \left(x^{2}-6x\right)+\left(7x-42\right) को रूपमा पुन: लेख्नुहोस्।
x\left(x-6\right)+7\left(x-6\right)
x लाई पहिलो र 7 लाई दोस्रो समूहमा सन्दर्भ लिनुहोस्।
\left(x-6\right)\left(x+7\right)
वितरक गुण प्रयोग गरेर समान टर्म x-6 खण्डिकरण गर्नुहोस्।
x=6 x=-7
समीकरणको समाधान पत्ता लगाउन, x-6=0 र x+7=0 को समाधान गर्नुहोस्।
x^{2}+x-42=0
ax^{2}+bx+c=0 रूपका सबै समीकरणहरू वर्ग सूत्र: \frac{-b±\sqrt{b^{2}-4ac}}{2a} प्रयोग गरेर हल गर्न सकिन्छ। एउटा, ± जोड हँदा र अर्को घटाउ हुँदा वर्ग सूत्रले दुईवटा समाधानहरू दिन्छ।
x=\frac{-1±\sqrt{1^{2}-4\left(-42\right)}}{2}
यो समीकरण मानक ढाँचामा छ: ax^{2}+bx+c=0। वर्ग सूत्र \frac{-b±\sqrt{b^{2}-4ac}}{2a} मा a लाई 1 ले, b लाई 1 ले र c लाई -42 ले प्रतिस्थापन गर्नुहोस्।
x=\frac{-1±\sqrt{1-4\left(-42\right)}}{2}
1 वर्ग गर्नुहोस्।
x=\frac{-1±\sqrt{1+168}}{2}
-4 लाई -42 पटक गुणन गर्नुहोस्।
x=\frac{-1±\sqrt{169}}{2}
168 मा 1 जोड्नुहोस्
x=\frac{-1±13}{2}
169 को वर्गमूल निकाल्नुहोस्।
x=\frac{12}{2}
अब ± प्लस मानेर x=\frac{-1±13}{2} समीकरणलाई हल गर्नुहोस्। 13 मा -1 जोड्नुहोस्
x=6
12 लाई 2 ले भाग गर्नुहोस्।
x=-\frac{14}{2}
अब ± माइनस मानेर x=\frac{-1±13}{2} समीकरणलाई हल गर्नुहोस्। -1 बाट 13 घटाउनुहोस्।
x=-7
-14 लाई 2 ले भाग गर्नुहोस्।
x=6 x=-7
अब समिकरण समाधान भएको छ।
x^{2}+x-42=0
यो जस्ता वर्ग समीकरणहरूको वर्गलाई पूरा गरेर यिनीहरू हल हुन सक्छन्। वर्गलाई पूरा गर्नको लागि, समीकरण सुरुमा x^{2}+bx=c को रूपमा हुनुपर्छ।
x^{2}+x-42-\left(-42\right)=-\left(-42\right)
समीकरणको दुबैतिर 42 जोड्नुहोस्।
x^{2}+x=-\left(-42\right)
-42 लाई आफैबाट घटाउनाले 0 बाँकी रहन्छ।
x^{2}+x=42
0 बाट -42 घटाउनुहोस्।
x^{2}+x+\left(\frac{1}{2}\right)^{2}=42+\left(\frac{1}{2}\right)^{2}
2 द्वारा \frac{1}{2} प्राप्त गर्न x पदको गुणाङ्कलाई 1 ले भाग गर्नुहोस्। त्यसपछि \frac{1}{2} को वर्गलाई समीकरणको दुबैतिर जोड्नुहोस्। यो चरणले समीकरणको बायाँ भागलाई पूर्ण वर्ग बनाउँछ।
x^{2}+x+\frac{1}{4}=42+\frac{1}{4}
भिन्नको अंश र हर दुबैलाई वर्ग गरेर \frac{1}{2} लाई वर्ग गर्नुहोस्।
x^{2}+x+\frac{1}{4}=\frac{169}{4}
\frac{1}{4} मा 42 जोड्नुहोस्
\left(x+\frac{1}{2}\right)^{2}=\frac{169}{4}
कारक x^{2}+x+\frac{1}{4}। सामान्यतया, यदि x^{2}+bx+c एक उचित वर्ग हो भने यसलाई \left(x+\frac{b}{2}\right)^{2}को रूपमा कारक गर्न सकिन्छ।
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{\frac{169}{4}}
समीकरणको दुबैतिरको वर्गमूल निकाल्नुहोस्।
x+\frac{1}{2}=\frac{13}{2} x+\frac{1}{2}=-\frac{13}{2}
सरल गर्नुहोस्।
x=6 x=-7
समीकरणको दुबैतिरबाट \frac{1}{2} घटाउनुहोस्।
उदाहरणहरू[सम्पादन गर्ने]
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिति
4 \sin \theta \cos \theta = 2 \sin \theta
रैखिक समीकरण
y = 3x + 4
अंकगणित
699 * 533
म्याट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालिक समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
भिन्नता
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमाहरू
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}