मुख्य सामग्रीमा स्किप गर्नुहोस्
x को लागि हल गर्नुहोस्
Tick mark Image
ग्राफ

वेब खोजीबाट समान समस्याहरू

साझेदारी गर्नुहोस्

x^{2}+x-20=0
दुवै छेउबाट 20 घटाउनुहोस्।
a+b=1 ab=-20
समीकरणको समाधान गर्न, x^{2}+x-20 लाई फर्मूला x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) प्रयोग गरी फ्याक्टर निकाल्नुहोस्। a र b पत्ता लगाउन, समाधान गर्नका लागि प्रणाली सेटअप गर्नुहोस्।
-1,20 -2,10 -4,5
ab नकारात्मक भएको हुनाले, a र b को विपरीत चिन्ह हुन्छ। a+b सकारात्मक भएको हुनाले, सकारात्मक नम्बरको यथार्थ मान नकारात्मकको भन्दा धेरै हुन्छ। गुणनफल -20 दिने सबै पूर्ण संख्याहरूलाई सूचीबद्ध गर्नुहोस्।
-1+20=19 -2+10=8 -4+5=1
प्रत्येक जोडीका लागि जोडफल गणना गर्नुहोस्।
a=-4 b=5
समाधान त्यो जोडी हो जसले जोडफल 1 दिन्छ।
\left(x-4\right)\left(x+5\right)
प्राप्त मानहरूको प्रयोग गरेर खण्डीकरण गरिएको अभिव्यञ्जक \left(x+a\right)\left(x+b\right) लाई पुन: लेख्नुहोस्।
x=4 x=-5
समीकरणको समाधान पत्ता लगाउन, x-4=0 र x+5=0 को समाधान गर्नुहोस्।
x^{2}+x-20=0
दुवै छेउबाट 20 घटाउनुहोस्।
a+b=1 ab=1\left(-20\right)=-20
समीकरणको समाधान गर्न, बायाँ भागलाई समूहमा राखेर फ्याक्टर निकाल्नुहोस्। सर्वप्रथम, बायाँ भागलाई x^{2}+ax+bx-20 को रूपमा पुन: लेख्न आवश्यक हुन्छ। a र b पत्ता लगाउन, समाधान गर्नका लागि प्रणाली सेटअप गर्नुहोस्।
-1,20 -2,10 -4,5
ab नकारात्मक भएको हुनाले, a र b को विपरीत चिन्ह हुन्छ। a+b सकारात्मक भएको हुनाले, सकारात्मक नम्बरको यथार्थ मान नकारात्मकको भन्दा धेरै हुन्छ। गुणनफल -20 दिने सबै पूर्ण संख्याहरूलाई सूचीबद्ध गर्नुहोस्।
-1+20=19 -2+10=8 -4+5=1
प्रत्येक जोडीका लागि जोडफल गणना गर्नुहोस्।
a=-4 b=5
समाधान त्यो जोडी हो जसले जोडफल 1 दिन्छ।
\left(x^{2}-4x\right)+\left(5x-20\right)
x^{2}+x-20 लाई \left(x^{2}-4x\right)+\left(5x-20\right) को रूपमा पुन: लेख्नुहोस्।
x\left(x-4\right)+5\left(x-4\right)
x लाई पहिलो र 5 लाई दोस्रो समूहमा सन्दर्भ लिनुहोस्।
\left(x-4\right)\left(x+5\right)
वितरक गुण प्रयोग गरेर समान टर्म x-4 खण्डिकरण गर्नुहोस्।
x=4 x=-5
समीकरणको समाधान पत्ता लगाउन, x-4=0 र x+5=0 को समाधान गर्नुहोस्।
x^{2}+x=20
ax^{2}+bx+c=0 रूपका सबै समीकरणहरू वर्ग सूत्र: \frac{-b±\sqrt{b^{2}-4ac}}{2a} प्रयोग गरेर हल गर्न सकिन्छ। एउटा, ± जोड हँदा र अर्को घटाउ हुँदा वर्ग सूत्रले दुईवटा समाधानहरू दिन्छ।
x^{2}+x-20=20-20
समीकरणको दुबैतिरबाट 20 घटाउनुहोस्।
x^{2}+x-20=0
20 लाई आफैबाट घटाउनाले 0 बाँकी रहन्छ।
x=\frac{-1±\sqrt{1^{2}-4\left(-20\right)}}{2}
यो समीकरण मानक ढाँचामा छ: ax^{2}+bx+c=0। वर्ग सूत्र \frac{-b±\sqrt{b^{2}-4ac}}{2a} मा a लाई 1 ले, b लाई 1 ले र c लाई -20 ले प्रतिस्थापन गर्नुहोस्।
x=\frac{-1±\sqrt{1-4\left(-20\right)}}{2}
1 वर्ग गर्नुहोस्।
x=\frac{-1±\sqrt{1+80}}{2}
-4 लाई -20 पटक गुणन गर्नुहोस्।
x=\frac{-1±\sqrt{81}}{2}
80 मा 1 जोड्नुहोस्
x=\frac{-1±9}{2}
81 को वर्गमूल निकाल्नुहोस्।
x=\frac{8}{2}
अब ± प्लस मानेर x=\frac{-1±9}{2} समीकरणलाई हल गर्नुहोस्। 9 मा -1 जोड्नुहोस्
x=4
8 लाई 2 ले भाग गर्नुहोस्।
x=-\frac{10}{2}
अब ± माइनस मानेर x=\frac{-1±9}{2} समीकरणलाई हल गर्नुहोस्। -1 बाट 9 घटाउनुहोस्।
x=-5
-10 लाई 2 ले भाग गर्नुहोस्।
x=4 x=-5
अब समिकरण समाधान भएको छ।
x^{2}+x=20
यो जस्ता वर्ग समीकरणहरूको वर्गलाई पूरा गरेर यिनीहरू हल हुन सक्छन्। वर्गलाई पूरा गर्नको लागि, समीकरण सुरुमा x^{2}+bx=c को रूपमा हुनुपर्छ।
x^{2}+x+\left(\frac{1}{2}\right)^{2}=20+\left(\frac{1}{2}\right)^{2}
2 द्वारा \frac{1}{2} प्राप्त गर्न x पदको गुणाङ्कलाई 1 ले भाग गर्नुहोस्। त्यसपछि \frac{1}{2} को वर्गलाई समीकरणको दुबैतिर जोड्नुहोस्। यो चरणले समीकरणको बायाँ भागलाई पूर्ण वर्ग बनाउँछ।
x^{2}+x+\frac{1}{4}=20+\frac{1}{4}
भिन्नको अंश र हर दुबैलाई वर्ग गरेर \frac{1}{2} लाई वर्ग गर्नुहोस्।
x^{2}+x+\frac{1}{4}=\frac{81}{4}
\frac{1}{4} मा 20 जोड्नुहोस्
\left(x+\frac{1}{2}\right)^{2}=\frac{81}{4}
कारक x^{2}+x+\frac{1}{4}। सामान्यतया, यदि x^{2}+bx+c एक उचित वर्ग हो भने यसलाई \left(x+\frac{b}{2}\right)^{2}को रूपमा कारक गर्न सकिन्छ।
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{\frac{81}{4}}
समीकरणको दुबैतिरको वर्गमूल निकाल्नुहोस्।
x+\frac{1}{2}=\frac{9}{2} x+\frac{1}{2}=-\frac{9}{2}
सरल गर्नुहोस्।
x=4 x=-5
समीकरणको दुबैतिरबाट \frac{1}{2} घटाउनुहोस्।