x को लागि हल गर्नुहोस्
x=-4
x=-3
ग्राफ
साझेदारी गर्नुहोस्
क्लिपबोर्डमा प्रतिलिपि गरियो
a+b=7 ab=12
समीकरणको समाधान गर्न, x^{2}+7x+12 लाई फर्मूला x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) प्रयोग गरी फ्याक्टर निकाल्नुहोस्। a र b पत्ता लगाउन, समाधान गर्नका लागि प्रणाली सेटअप गर्नुहोस्।
1,12 2,6 3,4
ab सकारात्मक भएको हुनाले, a र b को समान चिन्ह हुन्छ। a+b सकारात्मक भएको हुनाले, a र b दुबै सकारात्मक हुन्छन्। गुणनफल 12 दिने सबै पूर्ण संख्याहरूलाई सूचीबद्ध गर्नुहोस्।
1+12=13 2+6=8 3+4=7
प्रत्येक जोडीका लागि जोडफल गणना गर्नुहोस्।
a=3 b=4
समाधान त्यो जोडी हो जसले जोडफल 7 दिन्छ।
\left(x+3\right)\left(x+4\right)
प्राप्त मानहरूको प्रयोग गरेर खण्डीकरण गरिएको अभिव्यञ्जक \left(x+a\right)\left(x+b\right) लाई पुन: लेख्नुहोस्।
x=-3 x=-4
समीकरणको समाधान पत्ता लगाउन, x+3=0 र x+4=0 को समाधान गर्नुहोस्।
a+b=7 ab=1\times 12=12
समीकरणको समाधान गर्न, बायाँ भागलाई समूहमा राखेर फ्याक्टर निकाल्नुहोस्। सर्वप्रथम, बायाँ भागलाई x^{2}+ax+bx+12 को रूपमा पुन: लेख्न आवश्यक हुन्छ। a र b पत्ता लगाउन, समाधान गर्नका लागि प्रणाली सेटअप गर्नुहोस्।
1,12 2,6 3,4
ab सकारात्मक भएको हुनाले, a र b को समान चिन्ह हुन्छ। a+b सकारात्मक भएको हुनाले, a र b दुबै सकारात्मक हुन्छन्। गुणनफल 12 दिने सबै पूर्ण संख्याहरूलाई सूचीबद्ध गर्नुहोस्।
1+12=13 2+6=8 3+4=7
प्रत्येक जोडीका लागि जोडफल गणना गर्नुहोस्।
a=3 b=4
समाधान त्यो जोडी हो जसले जोडफल 7 दिन्छ।
\left(x^{2}+3x\right)+\left(4x+12\right)
x^{2}+7x+12 लाई \left(x^{2}+3x\right)+\left(4x+12\right) को रूपमा पुन: लेख्नुहोस्।
x\left(x+3\right)+4\left(x+3\right)
x लाई पहिलो र 4 लाई दोस्रो समूहमा सन्दर्भ लिनुहोस्।
\left(x+3\right)\left(x+4\right)
वितरक गुण प्रयोग गरेर समान टर्म x+3 खण्डिकरण गर्नुहोस्।
x=-3 x=-4
समीकरणको समाधान पत्ता लगाउन, x+3=0 र x+4=0 को समाधान गर्नुहोस्।
x^{2}+7x+12=0
ax^{2}+bx+c=0 रूपका सबै समीकरणहरू वर्ग सूत्र: \frac{-b±\sqrt{b^{2}-4ac}}{2a} प्रयोग गरेर हल गर्न सकिन्छ। एउटा, ± जोड हँदा र अर्को घटाउ हुँदा वर्ग सूत्रले दुईवटा समाधानहरू दिन्छ।
x=\frac{-7±\sqrt{7^{2}-4\times 12}}{2}
यो समीकरण मानक ढाँचामा छ: ax^{2}+bx+c=0। वर्ग सूत्र \frac{-b±\sqrt{b^{2}-4ac}}{2a} मा a लाई 1 ले, b लाई 7 ले र c लाई 12 ले प्रतिस्थापन गर्नुहोस्।
x=\frac{-7±\sqrt{49-4\times 12}}{2}
7 वर्ग गर्नुहोस्।
x=\frac{-7±\sqrt{49-48}}{2}
-4 लाई 12 पटक गुणन गर्नुहोस्।
x=\frac{-7±\sqrt{1}}{2}
-48 मा 49 जोड्नुहोस्
x=\frac{-7±1}{2}
1 को वर्गमूल निकाल्नुहोस्।
x=-\frac{6}{2}
अब ± प्लस मानेर x=\frac{-7±1}{2} समीकरणलाई हल गर्नुहोस्। 1 मा -7 जोड्नुहोस्
x=-3
-6 लाई 2 ले भाग गर्नुहोस्।
x=-\frac{8}{2}
अब ± माइनस मानेर x=\frac{-7±1}{2} समीकरणलाई हल गर्नुहोस्। -7 बाट 1 घटाउनुहोस्।
x=-4
-8 लाई 2 ले भाग गर्नुहोस्।
x=-3 x=-4
अब समिकरण समाधान भएको छ।
x^{2}+7x+12=0
यो जस्ता वर्ग समीकरणहरूको वर्गलाई पूरा गरेर यिनीहरू हल हुन सक्छन्। वर्गलाई पूरा गर्नको लागि, समीकरण सुरुमा x^{2}+bx=c को रूपमा हुनुपर्छ।
x^{2}+7x+12-12=-12
समीकरणको दुबैतिरबाट 12 घटाउनुहोस्।
x^{2}+7x=-12
12 लाई आफैबाट घटाउनाले 0 बाँकी रहन्छ।
x^{2}+7x+\left(\frac{7}{2}\right)^{2}=-12+\left(\frac{7}{2}\right)^{2}
2 द्वारा \frac{7}{2} प्राप्त गर्न x पदको गुणाङ्कलाई 7 ले भाग गर्नुहोस्। त्यसपछि \frac{7}{2} को वर्गलाई समीकरणको दुबैतिर जोड्नुहोस्। यो चरणले समीकरणको बायाँ भागलाई पूर्ण वर्ग बनाउँछ।
x^{2}+7x+\frac{49}{4}=-12+\frac{49}{4}
भिन्नको अंश र हर दुबैलाई वर्ग गरेर \frac{7}{2} लाई वर्ग गर्नुहोस्।
x^{2}+7x+\frac{49}{4}=\frac{1}{4}
\frac{49}{4} मा -12 जोड्नुहोस्
\left(x+\frac{7}{2}\right)^{2}=\frac{1}{4}
x^{2}+7x+\frac{49}{4} गुणनखण्ड साधारणतया, x^{2}+bx+c पूर्ण वर्ग हँदा यो \left(x+\frac{b}{2}\right)^{2} को रूपमा सधै गुणनखण्डीत हुन सक्छ।
\sqrt{\left(x+\frac{7}{2}\right)^{2}}=\sqrt{\frac{1}{4}}
समीकरणको दुबैतिरको वर्गमूल निकाल्नुहोस्।
x+\frac{7}{2}=\frac{1}{2} x+\frac{7}{2}=-\frac{1}{2}
सरल गर्नुहोस्।
x=-3 x=-4
समीकरणको दुबैतिरबाट \frac{7}{2} घटाउनुहोस्।
उदाहरणहरू[सम्पादन गर्ने]
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिति
4 \sin \theta \cos \theta = 2 \sin \theta
रैखिक समीकरण
y = 3x + 4
अंकगणित
699 * 533
म्याट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालिक समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
भिन्नता
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमाहरू
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}