x को लागि हल गर्नुहोस् (complex solution)
x=-10+2\sqrt{5}i\approx -10+4.472135955i
x=-2\sqrt{5}i-10\approx -10-4.472135955i
ग्राफ
साझेदारी गर्नुहोस्
क्लिपबोर्डमा प्रतिलिपि गरियो
x^{2}+20x+120=0
ax^{2}+bx+c=0 रूपका सबै समीकरणहरू वर्ग सूत्र: \frac{-b±\sqrt{b^{2}-4ac}}{2a} प्रयोग गरेर हल गर्न सकिन्छ। एउटा, ± जोड हँदा र अर्को घटाउ हुँदा वर्ग सूत्रले दुईवटा समाधानहरू दिन्छ।
x=\frac{-20±\sqrt{20^{2}-4\times 120}}{2}
यो समीकरण मानक ढाँचामा छ: ax^{2}+bx+c=0। वर्ग सूत्र \frac{-b±\sqrt{b^{2}-4ac}}{2a} मा a लाई 1 ले, b लाई 20 ले र c लाई 120 ले प्रतिस्थापन गर्नुहोस्।
x=\frac{-20±\sqrt{400-4\times 120}}{2}
20 वर्ग गर्नुहोस्।
x=\frac{-20±\sqrt{400-480}}{2}
-4 लाई 120 पटक गुणन गर्नुहोस्।
x=\frac{-20±\sqrt{-80}}{2}
-480 मा 400 जोड्नुहोस्
x=\frac{-20±4\sqrt{5}i}{2}
-80 को वर्गमूल निकाल्नुहोस्।
x=\frac{-20+4\sqrt{5}i}{2}
अब ± प्लस मानेर x=\frac{-20±4\sqrt{5}i}{2} समीकरणलाई हल गर्नुहोस्। 4i\sqrt{5} मा -20 जोड्नुहोस्
x=-10+2\sqrt{5}i
-20+4i\sqrt{5} लाई 2 ले भाग गर्नुहोस्।
x=\frac{-4\sqrt{5}i-20}{2}
अब ± माइनस मानेर x=\frac{-20±4\sqrt{5}i}{2} समीकरणलाई हल गर्नुहोस्। -20 बाट 4i\sqrt{5} घटाउनुहोस्।
x=-2\sqrt{5}i-10
-20-4i\sqrt{5} लाई 2 ले भाग गर्नुहोस्।
x=-10+2\sqrt{5}i x=-2\sqrt{5}i-10
अब समिकरण समाधान भएको छ।
x^{2}+20x+120=0
यो जस्ता वर्ग समीकरणहरूको वर्गलाई पूरा गरेर यिनीहरू हल हुन सक्छन्। वर्गलाई पूरा गर्नको लागि, समीकरण सुरुमा x^{2}+bx=c को रूपमा हुनुपर्छ।
x^{2}+20x+120-120=-120
समीकरणको दुबैतिरबाट 120 घटाउनुहोस्।
x^{2}+20x=-120
120 लाई आफैबाट घटाउनाले 0 बाँकी रहन्छ।
x^{2}+20x+10^{2}=-120+10^{2}
2 द्वारा 10 प्राप्त गर्न x पदको गुणाङ्कलाई 20 ले भाग गर्नुहोस्। त्यसपछि 10 को वर्गलाई समीकरणको दुबैतिर जोड्नुहोस्। यो चरणले समीकरणको बायाँ भागलाई पूर्ण वर्ग बनाउँछ।
x^{2}+20x+100=-120+100
10 वर्ग गर्नुहोस्।
x^{2}+20x+100=-20
100 मा -120 जोड्नुहोस्
\left(x+10\right)^{2}=-20
कारक x^{2}+20x+100। सामान्यतया, यदि x^{2}+bx+c एक उचित वर्ग हो भने यसलाई \left(x+\frac{b}{2}\right)^{2}को रूपमा कारक गर्न सकिन्छ।
\sqrt{\left(x+10\right)^{2}}=\sqrt{-20}
समीकरणको दुबैतिरको वर्गमूल निकाल्नुहोस्।
x+10=2\sqrt{5}i x+10=-2\sqrt{5}i
सरल गर्नुहोस्।
x=-10+2\sqrt{5}i x=-2\sqrt{5}i-10
समीकरणको दुबैतिरबाट 10 घटाउनुहोस्।
उदाहरणहरू[सम्पादन गर्ने]
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिति
4 \sin \theta \cos \theta = 2 \sin \theta
रैखिक समीकरण
y = 3x + 4
अंकगणित
699 * 533
म्याट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालिक समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
भिन्नता
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमाहरू
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}