x को लागि हल गर्नुहोस्
x=-8
x=-3
ग्राफ
साझेदारी गर्नुहोस्
क्लिपबोर्डमा प्रतिलिपि गरियो
x^{2}+11x+24=0
दुबै छेउहरूमा 24 थप्नुहोस्।
a+b=11 ab=24
समीकरणको समाधान गर्न, x^{2}+11x+24 लाई फर्मूला x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) प्रयोग गरी फ्याक्टर निकाल्नुहोस्। a र b पत्ता लगाउन, समाधान गर्नका लागि प्रणाली सेटअप गर्नुहोस्।
1,24 2,12 3,8 4,6
ab सकारात्मक भएको हुनाले, a र b को समान चिन्ह हुन्छ। a+b सकारात्मक भएको हुनाले, a र b दुबै सकारात्मक हुन्छन्। गुणनफल 24 दिने सबै पूर्ण संख्याहरूलाई सूचीबद्ध गर्नुहोस्।
1+24=25 2+12=14 3+8=11 4+6=10
प्रत्येक जोडीका लागि जोडफल गणना गर्नुहोस्।
a=3 b=8
समाधान त्यो जोडी हो जसले जोडफल 11 दिन्छ।
\left(x+3\right)\left(x+8\right)
प्राप्त मानहरूको प्रयोग गरेर खण्डीकरण गरिएको अभिव्यञ्जक \left(x+a\right)\left(x+b\right) लाई पुन: लेख्नुहोस्।
x=-3 x=-8
समीकरणको समाधान पत्ता लगाउन, x+3=0 र x+8=0 को समाधान गर्नुहोस्।
x^{2}+11x+24=0
दुबै छेउहरूमा 24 थप्नुहोस्।
a+b=11 ab=1\times 24=24
समीकरणको समाधान गर्न, बायाँ भागलाई समूहमा राखेर फ्याक्टर निकाल्नुहोस्। सर्वप्रथम, बायाँ भागलाई x^{2}+ax+bx+24 को रूपमा पुन: लेख्न आवश्यक हुन्छ। a र b पत्ता लगाउन, समाधान गर्नका लागि प्रणाली सेटअप गर्नुहोस्।
1,24 2,12 3,8 4,6
ab सकारात्मक भएको हुनाले, a र b को समान चिन्ह हुन्छ। a+b सकारात्मक भएको हुनाले, a र b दुबै सकारात्मक हुन्छन्। गुणनफल 24 दिने सबै पूर्ण संख्याहरूलाई सूचीबद्ध गर्नुहोस्।
1+24=25 2+12=14 3+8=11 4+6=10
प्रत्येक जोडीका लागि जोडफल गणना गर्नुहोस्।
a=3 b=8
समाधान त्यो जोडी हो जसले जोडफल 11 दिन्छ।
\left(x^{2}+3x\right)+\left(8x+24\right)
x^{2}+11x+24 लाई \left(x^{2}+3x\right)+\left(8x+24\right) को रूपमा पुन: लेख्नुहोस्।
x\left(x+3\right)+8\left(x+3\right)
x लाई पहिलो र 8 लाई दोस्रो समूहमा सन्दर्भ लिनुहोस्।
\left(x+3\right)\left(x+8\right)
वितरक गुण प्रयोग गरेर समान टर्म x+3 खण्डिकरण गर्नुहोस्।
x=-3 x=-8
समीकरणको समाधान पत्ता लगाउन, x+3=0 र x+8=0 को समाधान गर्नुहोस्।
x^{2}+11x=-24
ax^{2}+bx+c=0 रूपका सबै समीकरणहरू वर्ग सूत्र: \frac{-b±\sqrt{b^{2}-4ac}}{2a} प्रयोग गरेर हल गर्न सकिन्छ। एउटा, ± जोड हँदा र अर्को घटाउ हुँदा वर्ग सूत्रले दुईवटा समाधानहरू दिन्छ।
x^{2}+11x-\left(-24\right)=-24-\left(-24\right)
समीकरणको दुबैतिर 24 जोड्नुहोस्।
x^{2}+11x-\left(-24\right)=0
-24 लाई आफैबाट घटाउनाले 0 बाँकी रहन्छ।
x^{2}+11x+24=0
0 बाट -24 घटाउनुहोस्।
x=\frac{-11±\sqrt{11^{2}-4\times 24}}{2}
यो समीकरण मानक ढाँचामा छ: ax^{2}+bx+c=0। वर्ग सूत्र \frac{-b±\sqrt{b^{2}-4ac}}{2a} मा a लाई 1 ले, b लाई 11 ले र c लाई 24 ले प्रतिस्थापन गर्नुहोस्।
x=\frac{-11±\sqrt{121-4\times 24}}{2}
11 वर्ग गर्नुहोस्।
x=\frac{-11±\sqrt{121-96}}{2}
-4 लाई 24 पटक गुणन गर्नुहोस्।
x=\frac{-11±\sqrt{25}}{2}
-96 मा 121 जोड्नुहोस्
x=\frac{-11±5}{2}
25 को वर्गमूल निकाल्नुहोस्।
x=-\frac{6}{2}
अब ± प्लस मानेर x=\frac{-11±5}{2} समीकरणलाई हल गर्नुहोस्। 5 मा -11 जोड्नुहोस्
x=-3
-6 लाई 2 ले भाग गर्नुहोस्।
x=-\frac{16}{2}
अब ± माइनस मानेर x=\frac{-11±5}{2} समीकरणलाई हल गर्नुहोस्। -11 बाट 5 घटाउनुहोस्।
x=-8
-16 लाई 2 ले भाग गर्नुहोस्।
x=-3 x=-8
अब समिकरण समाधान भएको छ।
x^{2}+11x=-24
यो जस्ता वर्ग समीकरणहरूको वर्गलाई पूरा गरेर यिनीहरू हल हुन सक्छन्। वर्गलाई पूरा गर्नको लागि, समीकरण सुरुमा x^{2}+bx=c को रूपमा हुनुपर्छ।
x^{2}+11x+\left(\frac{11}{2}\right)^{2}=-24+\left(\frac{11}{2}\right)^{2}
2 द्वारा \frac{11}{2} प्राप्त गर्न x पदको गुणाङ्कलाई 11 ले भाग गर्नुहोस्। त्यसपछि \frac{11}{2} को वर्गलाई समीकरणको दुबैतिर जोड्नुहोस्। यो चरणले समीकरणको बायाँ भागलाई पूर्ण वर्ग बनाउँछ।
x^{2}+11x+\frac{121}{4}=-24+\frac{121}{4}
भिन्नको अंश र हर दुबैलाई वर्ग गरेर \frac{11}{2} लाई वर्ग गर्नुहोस्।
x^{2}+11x+\frac{121}{4}=\frac{25}{4}
\frac{121}{4} मा -24 जोड्नुहोस्
\left(x+\frac{11}{2}\right)^{2}=\frac{25}{4}
कारक x^{2}+11x+\frac{121}{4}। सामान्यतया, यदि x^{2}+bx+c एक उचित वर्ग हो भने यसलाई \left(x+\frac{b}{2}\right)^{2}को रूपमा कारक गर्न सकिन्छ।
\sqrt{\left(x+\frac{11}{2}\right)^{2}}=\sqrt{\frac{25}{4}}
समीकरणको दुबैतिरको वर्गमूल निकाल्नुहोस्।
x+\frac{11}{2}=\frac{5}{2} x+\frac{11}{2}=-\frac{5}{2}
सरल गर्नुहोस्।
x=-3 x=-8
समीकरणको दुबैतिरबाट \frac{11}{2} घटाउनुहोस्।
उदाहरणहरू[सम्पादन गर्ने]
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिति
4 \sin \theta \cos \theta = 2 \sin \theta
रैखिक समीकरण
y = 3x + 4
अंकगणित
699 * 533
म्याट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालिक समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
भिन्नता
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमाहरू
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}