मुख्य सामग्रीमा स्किप गर्नुहोस्
x, y को लागि हल गर्नुहोस्
Tick mark Image
ग्राफ

वेब खोजीबाट समान समस्याहरू

साझेदारी गर्नुहोस्

x+2y=7,3x+5y=15
प्रतिस्थापनको प्रयोग गरी जोडी समीकरणहरूको हल गर्न, पहिले एउटा चरको एउटा समीकरण हल गर्नुहोस्। त्यसपछि त्यो चरको मानलाई अर्को समीकरणमा प्रतिस्थापन गर्नुहोस्।
x+2y=7
समीकरणहरू मध्ये एउटा छान्नुहोस् र बराबर चिह्नको बायाँतिरको x लाई अलग गरी x का लागि हल गर्नुहोस्।
x=-2y+7
समीकरणको दुबैतिरबाट 2y घटाउनुहोस्।
3\left(-2y+7\right)+5y=15
-2y+7 लाई x ले अर्को समीकरण 3x+5y=15 मा प्रतिस्थापन गर्नुहोस्।
-6y+21+5y=15
3 लाई -2y+7 पटक गुणन गर्नुहोस्।
-y+21=15
5y मा -6y जोड्नुहोस्
-y=-6
समीकरणको दुबैतिरबाट 21 घटाउनुहोस्।
y=6
दुबैतिर -1 ले भाग गर्नुहोस्।
x=-2\times 6+7
x=-2y+7 मा y लाई 6 ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले x लाई सिधै हल गर्न सक्नुहुन्छ।
x=-12+7
-2 लाई 6 पटक गुणन गर्नुहोस्।
x=-5
-12 मा 7 जोड्नुहोस्
x=-5,y=6
अब प्रणाली समाधान भएको छ।
x+2y=7,3x+5y=15
समीकरणलाई स्तरीय रूपमा राख्नुहोस् र त्यसपछि समीकरणहरूको प्रणालीलाई हल गर्न मेट्रिक्सहरू प्रयोग गर्नुहोस्।
\left(\begin{matrix}1&2\\3&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}7\\15\end{matrix}\right)
समीकरणहरूलाई मेट्रिक्स ढाँचामा लेख्नुहोस्।
inverse(\left(\begin{matrix}1&2\\3&5\end{matrix}\right))\left(\begin{matrix}1&2\\3&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\3&5\end{matrix}\right))\left(\begin{matrix}7\\15\end{matrix}\right)
समीकरणलाई \left(\begin{matrix}1&2\\3&5\end{matrix}\right) को विपरीत म्याट्रिक्सले बायाँतिर गुणन गर्नुहोस्।
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\3&5\end{matrix}\right))\left(\begin{matrix}7\\15\end{matrix}\right)
म्यार्टिक्सको उत्पादन र यसको विपरीत नै म्याट्रिक्सको पहिचान हो।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\3&5\end{matrix}\right))\left(\begin{matrix}7\\15\end{matrix}\right)
बराबर चिन्हको बायाँ भागमा रहेका म्याट्रिक्सहरूलाई गुणन गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{5-2\times 3}&-\frac{2}{5-2\times 3}\\-\frac{3}{5-2\times 3}&\frac{1}{5-2\times 3}\end{matrix}\right)\left(\begin{matrix}7\\15\end{matrix}\right)
2\times 2 मेट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) का लागि, विपरीत मेट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) हो, त्यसैले मेट्रिक्स समिकरणलाई मेट्रिक्स गुणन समस्याका रूपमा पुन: लेख्न सकिन्छ।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-5&2\\3&-1\end{matrix}\right)\left(\begin{matrix}7\\15\end{matrix}\right)
हिसाब गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-5\times 7+2\times 15\\3\times 7-15\end{matrix}\right)
मेट्रिक्सहरू गुणन गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-5\\6\end{matrix}\right)
हिसाब गर्नुहोस्।
x=-5,y=6
मेट्रिक्स तत्त्वहरू x र y लाई ता्नुहोस्।
x+2y=7,3x+5y=15
निराकरण गरी हल गर्नको लागि, चरहरू मध्ये एउटा चरको गुणांक दुबै समीकरणहरूमा समान हुनुपर्छ जसले गर्दा अर्कोबाट एउटा समीकरण घटाउँदा चर काटिनेछ।
3x+3\times 2y=3\times 7,3x+5y=15
x र 3x लाई बराबर बनाउन, पहिलो समीकरणको प्रत्येक भागमा सबै पदहरूलाई 3 ले गुणन गर्नुहोस् र दोस्रोको प्रत्येक भागमा सबै पदहरूलाई 1 ले गुणन गर्नुहोस्।
3x+6y=21,3x+5y=15
सरल गर्नुहोस्।
3x-3x+6y-5y=21-15
बराबर चिन्हको प्रत्येक भागमा समान पदहरूलाई घटाएर 3x+6y=21 बाट 3x+5y=15 घटाउनुहोस्।
6y-5y=21-15
-3x मा 3x जोड्नुहोस् समाधान हुन सक्ने एउटा मात्र चर भएको समीकरण छोड्दै 3x र -3x राशी रद्द हुन्छन्।
y=21-15
-5y मा 6y जोड्नुहोस्
y=6
-15 मा 21 जोड्नुहोस्
3x+5\times 6=15
3x+5y=15 मा y लाई 6 ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले x लाई सिधै हल गर्न सक्नुहुन्छ।
3x+30=15
5 लाई 6 पटक गुणन गर्नुहोस्।
3x=-15
समीकरणको दुबैतिरबाट 30 घटाउनुहोस्।
x=-5
दुबैतिर 3 ले भाग गर्नुहोस्।
x=-5,y=6
अब प्रणाली समाधान भएको छ।