भिन्नता w.r.t. w
\frac{15\sqrt[14]{w}}{14}
मूल्याङ्कन गर्नुहोस्
w^{\frac{15}{14}}
प्रश्नोत्तरी
Algebra
5 समस्याहरू यस प्रकार छन्:
w ^ { \frac { 4 } { 7 } } \cdot w ^ { \frac { 1 } { 2 } }
साझेदारी गर्नुहोस्
क्लिपबोर्डमा प्रतिलिपि गरियो
w^{\frac{4}{7}}\frac{\mathrm{d}}{\mathrm{d}w}(\sqrt{w})+\sqrt{w}\frac{\mathrm{d}}{\mathrm{d}w}(w^{\frac{4}{7}})
कुनै दुई भिन्न फलनहरूको लागि, दुई फलनहरूका गुणनफलहरूको डेरिभेटिभ पहिलो फलनसँग बराबर हुन्छ, दोस्रो धनात्मकको डेरिभेटिभ दोस्रो फलन पहिलो फलनको डेरिभेटिभसँग बराबर हुन्छ।
w^{\frac{4}{7}}\times \frac{1}{2}w^{\frac{1}{2}-1}+\sqrt{w}\times \frac{4}{7}w^{\frac{4}{7}-1}
बहुपदीयको व्युत्पन्न भनेको यसका पदहरूको व्युत्पन्नहरूको योगफल हो। कुनैपनि अचल पदको व्युत्पन्न 0 हुन्छ। ax^{n} को व्युत्पन्न nax^{n-1} हो।
w^{\frac{4}{7}}\times \frac{1}{2}w^{-\frac{1}{2}}+\sqrt{w}\times \frac{4}{7}w^{-\frac{3}{7}}
सरल गर्नुहोस्।
\frac{1}{2}w^{\frac{4}{7}-\frac{1}{2}}+\frac{4}{7}w^{\frac{1}{2}-\frac{3}{7}}
समान आधारका पावरहरूलाई गुणा गर्नको लागि, उनीहरूका घातांकहरू जोड्नुहोस्।
\frac{1}{2}\sqrt[14]{w}+\frac{4}{7}\sqrt[14]{w}
सरल गर्नुहोस्।
उदाहरणहरू[सम्पादन गर्ने]
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिति
4 \sin \theta \cos \theta = 2 \sin \theta
रैखिक समीकरण
y = 3x + 4
अंकगणित
699 * 533
म्याट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालिक समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
भिन्नता
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमाहरू
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}