मुख्य सामग्रीमा स्किप गर्नुहोस्
t को लागि हल गर्नुहोस्
Tick mark Image

वेब खोजीबाट समान समस्याहरू

साझेदारी गर्नुहोस्

a+b=-3 ab=-4
समीकरणको समाधान गर्न, t^{2}-3t-4 लाई फर्मूला t^{2}+\left(a+b\right)t+ab=\left(t+a\right)\left(t+b\right) प्रयोग गरी फ्याक्टर निकाल्नुहोस्। a र b पत्ता लगाउन, समाधान गर्नका लागि प्रणाली सेटअप गर्नुहोस्।
1,-4 2,-2
ab नकारात्मक भएको हुनाले, a र b को विपरीत चिन्ह हुन्छ। a+b नकारात्मक भएको हुनाले, नकारात्मक नम्बरको यथार्थ मान सकारात्मकको भन्दा धेरै हुन्छ। गुणनफल -4 दिने सबै पूर्ण संख्याहरूलाई सूचीबद्ध गर्नुहोस्।
1-4=-3 2-2=0
प्रत्येक जोडीका लागि जोडफल गणना गर्नुहोस्।
a=-4 b=1
समाधान त्यो जोडी हो जसले जोडफल -3 दिन्छ।
\left(t-4\right)\left(t+1\right)
प्राप्त मानहरूको प्रयोग गरेर खण्डीकरण गरिएको अभिव्यञ्जक \left(t+a\right)\left(t+b\right) लाई पुन: लेख्नुहोस्।
t=4 t=-1
समीकरणको समाधान पत्ता लगाउन, t-4=0 र t+1=0 को समाधान गर्नुहोस्।
a+b=-3 ab=1\left(-4\right)=-4
समीकरणको समाधान गर्न, बायाँ भागलाई समूहमा राखेर फ्याक्टर निकाल्नुहोस्। सर्वप्रथम, बायाँ भागलाई t^{2}+at+bt-4 को रूपमा पुन: लेख्न आवश्यक हुन्छ। a र b पत्ता लगाउन, समाधान गर्नका लागि प्रणाली सेटअप गर्नुहोस्।
1,-4 2,-2
ab नकारात्मक भएको हुनाले, a र b को विपरीत चिन्ह हुन्छ। a+b नकारात्मक भएको हुनाले, नकारात्मक नम्बरको यथार्थ मान सकारात्मकको भन्दा धेरै हुन्छ। गुणनफल -4 दिने सबै पूर्ण संख्याहरूलाई सूचीबद्ध गर्नुहोस्।
1-4=-3 2-2=0
प्रत्येक जोडीका लागि जोडफल गणना गर्नुहोस्।
a=-4 b=1
समाधान त्यो जोडी हो जसले जोडफल -3 दिन्छ।
\left(t^{2}-4t\right)+\left(t-4\right)
t^{2}-3t-4 लाई \left(t^{2}-4t\right)+\left(t-4\right) को रूपमा पुन: लेख्नुहोस्।
t\left(t-4\right)+t-4
t^{2}-4t मा t खण्डिकरण गर्नुहोस्।
\left(t-4\right)\left(t+1\right)
वितरक गुण प्रयोग गरेर समान टर्म t-4 खण्डिकरण गर्नुहोस्।
t=4 t=-1
समीकरणको समाधान पत्ता लगाउन, t-4=0 र t+1=0 को समाधान गर्नुहोस्।
t^{2}-3t-4=0
ax^{2}+bx+c=0 रूपका सबै समीकरणहरू वर्ग सूत्र: \frac{-b±\sqrt{b^{2}-4ac}}{2a} प्रयोग गरेर हल गर्न सकिन्छ। एउटा, ± जोड हँदा र अर्को घटाउ हुँदा वर्ग सूत्रले दुईवटा समाधानहरू दिन्छ।
t=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\left(-4\right)}}{2}
यो समीकरण मानक ढाँचामा छ: ax^{2}+bx+c=0। वर्ग सूत्र \frac{-b±\sqrt{b^{2}-4ac}}{2a} मा a लाई 1 ले, b लाई -3 ले र c लाई -4 ले प्रतिस्थापन गर्नुहोस्।
t=\frac{-\left(-3\right)±\sqrt{9-4\left(-4\right)}}{2}
-3 वर्ग गर्नुहोस्।
t=\frac{-\left(-3\right)±\sqrt{9+16}}{2}
-4 लाई -4 पटक गुणन गर्नुहोस्।
t=\frac{-\left(-3\right)±\sqrt{25}}{2}
16 मा 9 जोड्नुहोस्
t=\frac{-\left(-3\right)±5}{2}
25 को वर्गमूल निकाल्नुहोस्।
t=\frac{3±5}{2}
-3 विपरीत 3हो।
t=\frac{8}{2}
अब ± प्लस मानेर t=\frac{3±5}{2} समीकरणलाई हल गर्नुहोस्। 5 मा 3 जोड्नुहोस्
t=4
8 लाई 2 ले भाग गर्नुहोस्।
t=-\frac{2}{2}
अब ± माइनस मानेर t=\frac{3±5}{2} समीकरणलाई हल गर्नुहोस्। 3 बाट 5 घटाउनुहोस्।
t=-1
-2 लाई 2 ले भाग गर्नुहोस्।
t=4 t=-1
अब समिकरण समाधान भएको छ।
t^{2}-3t-4=0
यो जस्ता वर्ग समीकरणहरूको वर्गलाई पूरा गरेर यिनीहरू हल हुन सक्छन्। वर्गलाई पूरा गर्नको लागि, समीकरण सुरुमा x^{2}+bx=c को रूपमा हुनुपर्छ।
t^{2}-3t-4-\left(-4\right)=-\left(-4\right)
समीकरणको दुबैतिर 4 जोड्नुहोस्।
t^{2}-3t=-\left(-4\right)
-4 लाई आफैबाट घटाउनाले 0 बाँकी रहन्छ।
t^{2}-3t=4
0 बाट -4 घटाउनुहोस्।
t^{2}-3t+\left(-\frac{3}{2}\right)^{2}=4+\left(-\frac{3}{2}\right)^{2}
2 द्वारा -\frac{3}{2} प्राप्त गर्न x पदको गुणाङ्कलाई -3 ले भाग गर्नुहोस्। त्यसपछि -\frac{3}{2} को वर्गलाई समीकरणको दुबैतिर जोड्नुहोस्। यो चरणले समीकरणको बायाँ भागलाई पूर्ण वर्ग बनाउँछ।
t^{2}-3t+\frac{9}{4}=4+\frac{9}{4}
भिन्नको अंश र हर दुबैलाई वर्ग गरेर -\frac{3}{2} लाई वर्ग गर्नुहोस्।
t^{2}-3t+\frac{9}{4}=\frac{25}{4}
\frac{9}{4} मा 4 जोड्नुहोस्
\left(t-\frac{3}{2}\right)^{2}=\frac{25}{4}
कारक t^{2}-3t+\frac{9}{4}। सामान्यतया, यदि x^{2}+bx+c एक उचित वर्ग हो भने यसलाई \left(x+\frac{b}{2}\right)^{2}को रूपमा कारक गर्न सकिन्छ।
\sqrt{\left(t-\frac{3}{2}\right)^{2}}=\sqrt{\frac{25}{4}}
समीकरणको दुबैतिरको वर्गमूल निकाल्नुहोस्।
t-\frac{3}{2}=\frac{5}{2} t-\frac{3}{2}=-\frac{5}{2}
सरल गर्नुहोस्।
t=4 t=-1
समीकरणको दुबैतिर \frac{3}{2} जोड्नुहोस्।