मुख्य सामग्रीमा स्किप गर्नुहोस्
गुणन खण्ड
Tick mark Image
मूल्याङ्कन गर्नुहोस्
Tick mark Image
ग्राफ
प्रश्नोत्तरी
Polynomial

वेब खोजीबाट समान समस्याहरू

साझेदारी गर्नुहोस्

a+b=3 ab=1\times 2=2
एक्सप्रेसनलाई समूहमा राखेर फ्याक्टर निकाल्नुहोस्। सर्वप्रथम, एक्सप्रेसनलाई x^{2}+ax+bx+2 को रूपमा पुन: लेख्न आवश्यक छ। a र b पत्ता लगाउन, समाधान गर्नका लागि प्रणाली सेटअप गर्नुहोस्।
a=1 b=2
ab सकारात्मक भएको हुनाले, a र b को समान चिन्ह हुन्छ। a+b सकारात्मक भएको हुनाले, a र b दुबै सकारात्मक हुन्छन्। त्यस्तो मात्र जोडी प्रणाली समाधान हो।
\left(x^{2}+x\right)+\left(2x+2\right)
x^{2}+3x+2 लाई \left(x^{2}+x\right)+\left(2x+2\right) को रूपमा पुन: लेख्नुहोस्।
x\left(x+1\right)+2\left(x+1\right)
x लाई पहिलो र 2 लाई दोस्रो समूहमा सन्दर्भ लिनुहोस्।
\left(x+1\right)\left(x+2\right)
वितरक गुण प्रयोग गरेर समान टर्म x+1 खण्डिकरण गर्नुहोस्।
x^{2}+3x+2=0
क्वाड्रेटिक पोलिनोमियललाई ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) रूपान्तरणको प्रयोग गरेर खण्डिकरण गर्न सकिन्छ, जहाँ x_{1} र x_{2} क्वाड्रेटिक समिकरण ax^{2}+bx+c=0 को समाधान हो।
x=\frac{-3±\sqrt{3^{2}-4\times 2}}{2}
ax^{2}+bx+c=0 रूपका सबै समीकरणहरू वर्ग सूत्र: \frac{-b±\sqrt{b^{2}-4ac}}{2a} प्रयोग गरेर हल गर्न सकिन्छ। एउटा, ± जोड हँदा र अर्को घटाउ हुँदा वर्ग सूत्रले दुईवटा समाधानहरू दिन्छ।
x=\frac{-3±\sqrt{9-4\times 2}}{2}
3 वर्ग गर्नुहोस्।
x=\frac{-3±\sqrt{9-8}}{2}
-4 लाई 2 पटक गुणन गर्नुहोस्।
x=\frac{-3±\sqrt{1}}{2}
-8 मा 9 जोड्नुहोस्
x=\frac{-3±1}{2}
1 को वर्गमूल निकाल्नुहोस्।
x=-\frac{2}{2}
अब ± प्लस मानेर x=\frac{-3±1}{2} समीकरणलाई हल गर्नुहोस्। 1 मा -3 जोड्नुहोस्
x=-1
-2 लाई 2 ले भाग गर्नुहोस्।
x=-\frac{4}{2}
अब ± माइनस मानेर x=\frac{-3±1}{2} समीकरणलाई हल गर्नुहोस्। -3 बाट 1 घटाउनुहोस्।
x=-2
-4 लाई 2 ले भाग गर्नुहोस्।
x^{2}+3x+2=\left(x-\left(-1\right)\right)\left(x-\left(-2\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) को प्रयोग गरेर मौलिक अभिव्यञ्जकलाई खण्डिकरण गर्नुहोस्। x_{1} को लागि -1 र x_{2} को लागि -2 प्रतिस्थापित गर्नुहोस्।
x^{2}+3x+2=\left(x+1\right)\left(x+2\right)
p-\left(-q\right) देखि p+q को स्वरूपमा रहेका सबै अभिव्यञ्जकहरूलाई सरल गर्नुहोस्।