मुख्य सामग्रीमा स्किप गर्नुहोस्
गुणन खण्ड
Tick mark Image
मूल्याङ्कन गर्नुहोस्
Tick mark Image
ग्राफ

वेब खोजीबाट समान समस्याहरू

साझेदारी गर्नुहोस्

a+b=2 ab=1\left(-24\right)=-24
एक्सप्रेसनलाई समूहमा राखेर फ्याक्टर निकाल्नुहोस्। सर्वप्रथम, एक्सप्रेसनलाई x^{2}+ax+bx-24 को रूपमा पुन: लेख्न आवश्यक छ। a र b पत्ता लगाउन, समाधान गर्नका लागि प्रणाली सेटअप गर्नुहोस्।
-1,24 -2,12 -3,8 -4,6
ab नकारात्मक भएको हुनाले, a र b को विपरीत चिन्ह हुन्छ। a+b सकारात्मक भएको हुनाले, सकारात्मक नम्बरको यथार्थ मान नकारात्मकको भन्दा धेरै हुन्छ। गुणनफल -24 दिने सबै पूर्ण संख्याहरूलाई सूचीबद्ध गर्नुहोस्।
-1+24=23 -2+12=10 -3+8=5 -4+6=2
प्रत्येक जोडीका लागि जोडफल गणना गर्नुहोस्।
a=-4 b=6
समाधान त्यो जोडी हो जसले जोडफल 2 दिन्छ।
\left(x^{2}-4x\right)+\left(6x-24\right)
x^{2}+2x-24 लाई \left(x^{2}-4x\right)+\left(6x-24\right) को रूपमा पुन: लेख्नुहोस्।
x\left(x-4\right)+6\left(x-4\right)
x लाई पहिलो र 6 लाई दोस्रो समूहमा सन्दर्भ लिनुहोस्।
\left(x-4\right)\left(x+6\right)
वितरक गुण प्रयोग गरेर समान टर्म x-4 खण्डिकरण गर्नुहोस्।
x^{2}+2x-24=0
क्वाड्रेटिक पोलिनोमियललाई ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) रूपान्तरणको प्रयोग गरेर खण्डिकरण गर्न सकिन्छ, जहाँ x_{1} र x_{2} क्वाड्रेटिक समिकरण ax^{2}+bx+c=0 को समाधान हो।
x=\frac{-2±\sqrt{2^{2}-4\left(-24\right)}}{2}
ax^{2}+bx+c=0 रूपका सबै समीकरणहरू वर्ग सूत्र: \frac{-b±\sqrt{b^{2}-4ac}}{2a} प्रयोग गरेर हल गर्न सकिन्छ। एउटा, ± जोड हँदा र अर्को घटाउ हुँदा वर्ग सूत्रले दुईवटा समाधानहरू दिन्छ।
x=\frac{-2±\sqrt{4-4\left(-24\right)}}{2}
2 वर्ग गर्नुहोस्।
x=\frac{-2±\sqrt{4+96}}{2}
-4 लाई -24 पटक गुणन गर्नुहोस्।
x=\frac{-2±\sqrt{100}}{2}
96 मा 4 जोड्नुहोस्
x=\frac{-2±10}{2}
100 को वर्गमूल निकाल्नुहोस्।
x=\frac{8}{2}
अब ± प्लस मानेर x=\frac{-2±10}{2} समीकरणलाई हल गर्नुहोस्। 10 मा -2 जोड्नुहोस्
x=4
8 लाई 2 ले भाग गर्नुहोस्।
x=-\frac{12}{2}
अब ± माइनस मानेर x=\frac{-2±10}{2} समीकरणलाई हल गर्नुहोस्। -2 बाट 10 घटाउनुहोस्।
x=-6
-12 लाई 2 ले भाग गर्नुहोस्।
x^{2}+2x-24=\left(x-4\right)\left(x-\left(-6\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) को प्रयोग गरेर मौलिक अभिव्यञ्जकलाई खण्डिकरण गर्नुहोस्। x_{1} को लागि 4 र x_{2} को लागि -6 प्रतिस्थापित गर्नुहोस्।
x^{2}+2x-24=\left(x-4\right)\left(x+6\right)
p-\left(-q\right) देखि p+q को स्वरूपमा रहेका सबै अभिव्यञ्जकहरूलाई सरल गर्नुहोस्।