मुख्य सामग्रीमा स्किप गर्नुहोस्
गुणन खण्ड
Tick mark Image
मूल्याङ्कन गर्नुहोस्
Tick mark Image
ग्राफ

वेब खोजीबाट समान समस्याहरू

साझेदारी गर्नुहोस्

\left(x-5\right)\left(-x^{2}-2x+3\right)
संयुक्तिक मूलको सिद्धान्त अनुसार, बहुपरीयका सबै संयुक्तिक मूलहरू \frac{p}{q} को रूपमा हुन्छन्, जहाँ p ले स्थिर राशी -15 लाई भाग गर्छ र q ले प्रमुख गुणांक -1 लाई भाग गर्छ। उक्त एउटा खण्ड 5 हो। x-5 ले भाग गरेर बहुपदीय खण्डलाई खण्डीकरण गर्नुहोस्।
a+b=-2 ab=-3=-3
मानौं -x^{2}-2x+3। एक्सप्रेसनलाई समूहमा राखेर फ्याक्टर निकाल्नुहोस्। सर्वप्रथम, एक्सप्रेसनलाई -x^{2}+ax+bx+3 को रूपमा पुन: लेख्न आवश्यक छ। a र b पत्ता लगाउन, समाधान गर्नका लागि प्रणाली सेटअप गर्नुहोस्।
a=1 b=-3
ab नकारात्मक भएको हुनाले, a र b को विपरीत चिन्ह हुन्छ। a+b नकारात्मक भएको हुनाले, नकारात्मक नम्बरको यथार्थ मान सकारात्मकको भन्दा धेरै हुन्छ। त्यस्तो मात्र जोडी प्रणाली समाधान हो।
\left(-x^{2}+x\right)+\left(-3x+3\right)
-x^{2}-2x+3 लाई \left(-x^{2}+x\right)+\left(-3x+3\right) को रूपमा पुन: लेख्नुहोस्।
x\left(-x+1\right)+3\left(-x+1\right)
x लाई पहिलो र 3 लाई दोस्रो समूहमा सन्दर्भ लिनुहोस्।
\left(-x+1\right)\left(x+3\right)
वितरक गुण प्रयोग गरेर समान टर्म -x+1 खण्डिकरण गर्नुहोस्।
\left(x-5\right)\left(-x+1\right)\left(x+3\right)
पूर्णतया खण्डीकरण गरिएको अभिव्यञ्जक पुन: लेख्नुहोस्।