मुख्य सामग्रीमा स्किप गर्नुहोस्
b को लागि हल गर्नुहोस्
Tick mark Image
प्रश्नोत्तरी
Quadratic Equation

वेब खोजीबाट समान समस्याहरू

साझेदारी गर्नुहोस्

a+b=-4 ab=4
समीकरणको समाधान गर्न, b^{2}-4b+4 लाई फर्मूला b^{2}+\left(a+b\right)b+ab=\left(b+a\right)\left(b+b\right) प्रयोग गरी फ्याक्टर निकाल्नुहोस्। a र b पत्ता लगाउन, समाधान गर्नका लागि प्रणाली सेटअप गर्नुहोस्।
-1,-4 -2,-2
ab सकारात्मक भएको हुनाले, a र b को समान चिन्ह हुन्छ। a+b नकारात्मक भएको हुनाले, a र b दुबै नकारात्मक हुन्छन्। गुणनफल 4 दिने सबै पूर्ण संख्याहरूलाई सूचीबद्ध गर्नुहोस्।
-1-4=-5 -2-2=-4
प्रत्येक जोडीका लागि जोडफल गणना गर्नुहोस्।
a=-2 b=-2
समाधान त्यो जोडी हो जसले जोडफल -4 दिन्छ।
\left(b-2\right)\left(b-2\right)
प्राप्त मानहरूको प्रयोग गरेर खण्डीकरण गरिएको अभिव्यञ्जक \left(b+a\right)\left(b+b\right) लाई पुन: लेख्नुहोस्।
\left(b-2\right)^{2}
द्विपदीय वर्गको रूपमा पूर्नलेखन गर्नुहोस्।
b=2
समीकरण समाधान पत्ता लगाउन, b-2=0 को समाधान गर्नुहोस्।
a+b=-4 ab=1\times 4=4
समीकरणको समाधान गर्न, बायाँ भागलाई समूहमा राखेर फ्याक्टर निकाल्नुहोस्। सर्वप्रथम, बायाँ भागलाई b^{2}+ab+bb+4 को रूपमा पुन: लेख्न आवश्यक हुन्छ। a र b पत्ता लगाउन, समाधान गर्नका लागि प्रणाली सेटअप गर्नुहोस्।
-1,-4 -2,-2
ab सकारात्मक भएको हुनाले, a र b को समान चिन्ह हुन्छ। a+b नकारात्मक भएको हुनाले, a र b दुबै नकारात्मक हुन्छन्। गुणनफल 4 दिने सबै पूर्ण संख्याहरूलाई सूचीबद्ध गर्नुहोस्।
-1-4=-5 -2-2=-4
प्रत्येक जोडीका लागि जोडफल गणना गर्नुहोस्।
a=-2 b=-2
समाधान त्यो जोडी हो जसले जोडफल -4 दिन्छ।
\left(b^{2}-2b\right)+\left(-2b+4\right)
b^{2}-4b+4 लाई \left(b^{2}-2b\right)+\left(-2b+4\right) को रूपमा पुन: लेख्नुहोस्।
b\left(b-2\right)-2\left(b-2\right)
b लाई पहिलो र -2 लाई दोस्रो समूहमा सन्दर्भ लिनुहोस्।
\left(b-2\right)\left(b-2\right)
वितरक गुण प्रयोग गरेर समान टर्म b-2 खण्डिकरण गर्नुहोस्।
\left(b-2\right)^{2}
द्विपदीय वर्गको रूपमा पूर्नलेखन गर्नुहोस्।
b=2
समीकरण समाधान पत्ता लगाउन, b-2=0 को समाधान गर्नुहोस्।
b^{2}-4b+4=0
ax^{2}+bx+c=0 रूपका सबै समीकरणहरू वर्ग सूत्र: \frac{-b±\sqrt{b^{2}-4ac}}{2a} प्रयोग गरेर हल गर्न सकिन्छ। एउटा, ± जोड हँदा र अर्को घटाउ हुँदा वर्ग सूत्रले दुईवटा समाधानहरू दिन्छ।
b=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 4}}{2}
यो समीकरण मानक ढाँचामा छ: ax^{2}+bx+c=0। वर्ग सूत्र \frac{-b±\sqrt{b^{2}-4ac}}{2a} मा a लाई 1 ले, b लाई -4 ले र c लाई 4 ले प्रतिस्थापन गर्नुहोस्।
b=\frac{-\left(-4\right)±\sqrt{16-4\times 4}}{2}
-4 वर्ग गर्नुहोस्।
b=\frac{-\left(-4\right)±\sqrt{16-16}}{2}
-4 लाई 4 पटक गुणन गर्नुहोस्।
b=\frac{-\left(-4\right)±\sqrt{0}}{2}
-16 मा 16 जोड्नुहोस्
b=-\frac{-4}{2}
0 को वर्गमूल निकाल्नुहोस्।
b=\frac{4}{2}
-4 विपरीत 4हो।
b=2
4 लाई 2 ले भाग गर्नुहोस्।
b^{2}-4b+4=0
यो जस्ता वर्ग समीकरणहरूको वर्गलाई पूरा गरेर यिनीहरू हल हुन सक्छन्। वर्गलाई पूरा गर्नको लागि, समीकरण सुरुमा x^{2}+bx=c को रूपमा हुनुपर्छ।
\left(b-2\right)^{2}=0
कारक b^{2}-4b+4। सामान्यतया, यदि x^{2}+bx+c एक उचित वर्ग हो भने यसलाई \left(x+\frac{b}{2}\right)^{2}को रूपमा कारक गर्न सकिन्छ।
\sqrt{\left(b-2\right)^{2}}=\sqrt{0}
समीकरणको दुबैतिरको वर्गमूल निकाल्नुहोस्।
b-2=0 b-2=0
सरल गर्नुहोस्।
b=2 b=2
समीकरणको दुबैतिर 2 जोड्नुहोस्।
b=2
अब समिकरण समाधान भएको छ। समाधानहरू उही हुन्।