गुणन खण्ड
ab\left(x-8\right)\left(x+3\right)
मूल्याङ्कन गर्नुहोस्
ab\left(x-8\right)\left(x+3\right)
ग्राफ
साझेदारी गर्नुहोस्
क्लिपबोर्डमा प्रतिलिपि गरियो
ab\left(x^{2}-5x-24\right)
ab को गुणन खण्ड निकाल्नुहोस्।
p+q=-5 pq=1\left(-24\right)=-24
मानौं x^{2}-5x-24। एक्सप्रेसनलाई समूहमा राखेर फ्याक्टर निकाल्नुहोस्। सर्वप्रथम, एक्सप्रेसनलाई x^{2}+px+qx-24 को रूपमा पुन: लेख्न आवश्यक छ। p र q पत्ता लगाउन, समाधान गर्नका लागि प्रणाली सेटअप गर्नुहोस्।
1,-24 2,-12 3,-8 4,-6
pq नकारात्मक भएको हुनाले, p र q को विपरीत चिन्ह हुन्छ। p+q नकारात्मक भएको हुनाले, नकारात्मक नम्बरको यथार्थ मान सकारात्मकको भन्दा धेरै हुन्छ। गुणनफल -24 दिने सबै पूर्ण संख्याहरूलाई सूचीबद्ध गर्नुहोस्।
1-24=-23 2-12=-10 3-8=-5 4-6=-2
प्रत्येक जोडीका लागि जोडफल गणना गर्नुहोस्।
p=-8 q=3
समाधान त्यो जोडी हो जसले जोडफल -5 दिन्छ।
\left(x^{2}-8x\right)+\left(3x-24\right)
x^{2}-5x-24 लाई \left(x^{2}-8x\right)+\left(3x-24\right) को रूपमा पुन: लेख्नुहोस्।
x\left(x-8\right)+3\left(x-8\right)
x लाई पहिलो र 3 लाई दोस्रो समूहमा सन्दर्भ लिनुहोस्।
\left(x-8\right)\left(x+3\right)
वितरक गुण प्रयोग गरेर समान टर्म x-8 खण्डिकरण गर्नुहोस्।
ab\left(x-8\right)\left(x+3\right)
पूर्णतया खण्डीकरण गरिएको अभिव्यञ्जक पुन: लेख्नुहोस्।
उदाहरणहरू[सम्पादन गर्ने]
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिति
4 \sin \theta \cos \theta = 2 \sin \theta
रैखिक समीकरण
y = 3x + 4
अंकगणित
699 * 533
म्याट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालिक समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
भिन्नता
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमाहरू
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}