मुख्य सामग्रीमा स्किप गर्नुहोस्
a को लागि हल गर्नुहोस्
Tick mark Image

वेब खोजीबाट समान समस्याहरू

साझेदारी गर्नुहोस्

\left(a-1\right)\left(a+1\right)=0
मानौं a^{2}-1। a^{2}-1 लाई a^{2}-1^{2} को रूपमा पुन: लेख्नुहोस्। वर्गहरूबीचको भिन्नता निम्न नियमको प्रयोग गरेर खण्डिकरण गर्न सकिन्छ: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right)।
a=1 a=-1
समीकरणको समाधान पत्ता लगाउन, a-1=0 र a+1=0 को समाधान गर्नुहोस्।
a^{2}=1
दुबै छेउहरूमा 1 थप्नुहोस्। शून्यमा कुनै पनि अंक जोड्दा जोडफल सोही अंक बराबर नै हुन्छ।
a=1 a=-1
समीकरणको दुबैतिरको वर्गमूल निकाल्नुहोस्।
a^{2}-1=0
यो जस्ता x^{2} पद भएको तर x पद नभएका वर्ग समीकरणहरूलाई अझैपनि वर्ग सूत्र \frac{-b±\sqrt{b^{2}-4ac}}{2a} को प्रयोग गरी हल गर्न सकिन्छ, तिनीहरूलाई एकपटक स्तरीय रूपमा: ax^{2}+bx+c=0 राखिए पछि।
a=\frac{0±\sqrt{0^{2}-4\left(-1\right)}}{2}
यो समीकरण मानक ढाँचामा छ: ax^{2}+bx+c=0। वर्ग सूत्र \frac{-b±\sqrt{b^{2}-4ac}}{2a} मा a लाई 1 ले, b लाई 0 ले र c लाई -1 ले प्रतिस्थापन गर्नुहोस्।
a=\frac{0±\sqrt{-4\left(-1\right)}}{2}
0 वर्ग गर्नुहोस्।
a=\frac{0±\sqrt{4}}{2}
-4 लाई -1 पटक गुणन गर्नुहोस्।
a=\frac{0±2}{2}
4 को वर्गमूल निकाल्नुहोस्।
a=1
अब ± प्लस मानेर a=\frac{0±2}{2} समीकरणलाई हल गर्नुहोस्। 2 लाई 2 ले भाग गर्नुहोस्।
a=-1
अब ± माइनस मानेर a=\frac{0±2}{2} समीकरणलाई हल गर्नुहोस्। -2 लाई 2 ले भाग गर्नुहोस्।
a=1 a=-1
अब समिकरण समाधान भएको छ।