मुख्य सामग्रीमा स्किप गर्नुहोस्
x को लागि हल गर्नुहोस्
Tick mark Image
ग्राफ

वेब खोजीबाट समान समस्याहरू

साझेदारी गर्नुहोस्

8x^{2}-8x-1=0
ax^{2}+bx+c=0 रूपका सबै समीकरणहरू वर्ग सूत्र: \frac{-b±\sqrt{b^{2}-4ac}}{2a} प्रयोग गरेर हल गर्न सकिन्छ। एउटा, ± जोड हँदा र अर्को घटाउ हुँदा वर्ग सूत्रले दुईवटा समाधानहरू दिन्छ।
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 8\left(-1\right)}}{2\times 8}
यो समीकरण मानक ढाँचामा छ: ax^{2}+bx+c=0। वर्ग सूत्र \frac{-b±\sqrt{b^{2}-4ac}}{2a} मा a लाई 8 ले, b लाई -8 ले र c लाई -1 ले प्रतिस्थापन गर्नुहोस्।
x=\frac{-\left(-8\right)±\sqrt{64-4\times 8\left(-1\right)}}{2\times 8}
-8 वर्ग गर्नुहोस्।
x=\frac{-\left(-8\right)±\sqrt{64-32\left(-1\right)}}{2\times 8}
-4 लाई 8 पटक गुणन गर्नुहोस्।
x=\frac{-\left(-8\right)±\sqrt{64+32}}{2\times 8}
-32 लाई -1 पटक गुणन गर्नुहोस्।
x=\frac{-\left(-8\right)±\sqrt{96}}{2\times 8}
32 मा 64 जोड्नुहोस्
x=\frac{-\left(-8\right)±4\sqrt{6}}{2\times 8}
96 को वर्गमूल निकाल्नुहोस्।
x=\frac{8±4\sqrt{6}}{2\times 8}
-8 विपरीत 8हो।
x=\frac{8±4\sqrt{6}}{16}
2 लाई 8 पटक गुणन गर्नुहोस्।
x=\frac{4\sqrt{6}+8}{16}
अब ± प्लस मानेर x=\frac{8±4\sqrt{6}}{16} समीकरणलाई हल गर्नुहोस्। 4\sqrt{6} मा 8 जोड्नुहोस्
x=\frac{\sqrt{6}}{4}+\frac{1}{2}
8+4\sqrt{6} लाई 16 ले भाग गर्नुहोस्।
x=\frac{8-4\sqrt{6}}{16}
अब ± माइनस मानेर x=\frac{8±4\sqrt{6}}{16} समीकरणलाई हल गर्नुहोस्। 8 बाट 4\sqrt{6} घटाउनुहोस्।
x=-\frac{\sqrt{6}}{4}+\frac{1}{2}
8-4\sqrt{6} लाई 16 ले भाग गर्नुहोस्।
x=\frac{\sqrt{6}}{4}+\frac{1}{2} x=-\frac{\sqrt{6}}{4}+\frac{1}{2}
अब समिकरण समाधान भएको छ।
8x^{2}-8x-1=0
यो जस्ता वर्ग समीकरणहरूको वर्गलाई पूरा गरेर यिनीहरू हल हुन सक्छन्। वर्गलाई पूरा गर्नको लागि, समीकरण सुरुमा x^{2}+bx=c को रूपमा हुनुपर्छ।
8x^{2}-8x-1-\left(-1\right)=-\left(-1\right)
समीकरणको दुबैतिर 1 जोड्नुहोस्।
8x^{2}-8x=-\left(-1\right)
-1 लाई आफैबाट घटाउनाले 0 बाँकी रहन्छ।
8x^{2}-8x=1
0 बाट -1 घटाउनुहोस्।
\frac{8x^{2}-8x}{8}=\frac{1}{8}
दुबैतिर 8 ले भाग गर्नुहोस्।
x^{2}+\left(-\frac{8}{8}\right)x=\frac{1}{8}
8 द्वारा भाग गर्नाले 8 द्वारा गुणा गरिएकोलाई फिर्ता गर्दछ।
x^{2}-x=\frac{1}{8}
-8 लाई 8 ले भाग गर्नुहोस्।
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=\frac{1}{8}+\left(-\frac{1}{2}\right)^{2}
2 द्वारा -\frac{1}{2} प्राप्त गर्न x पदको गुणाङ्कलाई -1 ले भाग गर्नुहोस्। त्यसपछि -\frac{1}{2} को वर्गलाई समीकरणको दुबैतिर जोड्नुहोस्। यो चरणले समीकरणको बायाँ भागलाई पूर्ण वर्ग बनाउँछ।
x^{2}-x+\frac{1}{4}=\frac{1}{8}+\frac{1}{4}
भिन्नको अंश र हर दुबैलाई वर्ग गरेर -\frac{1}{2} लाई वर्ग गर्नुहोस्।
x^{2}-x+\frac{1}{4}=\frac{3}{8}
साझा हर फेला पारेर तथा अंशहरूलाई जोडेर \frac{1}{8} लाई \frac{1}{4} मा जोड्नुहोस्। त्यसपछि सम्भव भएमा भिन्नलाई न्यूनतम पदमा झार्नुहोस्।
\left(x-\frac{1}{2}\right)^{2}=\frac{3}{8}
कारक x^{2}-x+\frac{1}{4}। सामान्यतया, यदि x^{2}+bx+c एक उचित वर्ग हो भने यसलाई \left(x+\frac{b}{2}\right)^{2}को रूपमा कारक गर्न सकिन्छ।
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{\frac{3}{8}}
समीकरणको दुबैतिरको वर्गमूल निकाल्नुहोस्।
x-\frac{1}{2}=\frac{\sqrt{6}}{4} x-\frac{1}{2}=-\frac{\sqrt{6}}{4}
सरल गर्नुहोस्।
x=\frac{\sqrt{6}}{4}+\frac{1}{2} x=-\frac{\sqrt{6}}{4}+\frac{1}{2}
समीकरणको दुबैतिर \frac{1}{2} जोड्नुहोस्।