मुख्य सामग्रीमा स्किप गर्नुहोस्
गुणन खण्ड
Tick mark Image
मूल्याङ्कन गर्नुहोस्
Tick mark Image
ग्राफ

वेब खोजीबाट समान समस्याहरू

साझेदारी गर्नुहोस्

a+b=-6 ab=8\left(-9\right)=-72
एक्सप्रेसनलाई समूहमा राखेर फ्याक्टर निकाल्नुहोस्। सर्वप्रथम, एक्सप्रेसनलाई 8x^{2}+ax+bx-9 को रूपमा पुन: लेख्न आवश्यक छ। a र b पत्ता लगाउन, समाधान गर्नका लागि प्रणाली सेटअप गर्नुहोस्।
1,-72 2,-36 3,-24 4,-18 6,-12 8,-9
ab नकारात्मक भएको हुनाले, a र b को विपरीत चिन्ह हुन्छ। a+b नकारात्मक भएको हुनाले, नकारात्मक नम्बरको यथार्थ मान सकारात्मकको भन्दा धेरै हुन्छ। गुणनफल -72 दिने सबै पूर्ण संख्याहरूलाई सूचीबद्ध गर्नुहोस्।
1-72=-71 2-36=-34 3-24=-21 4-18=-14 6-12=-6 8-9=-1
प्रत्येक जोडीका लागि जोडफल गणना गर्नुहोस्।
a=-12 b=6
समाधान त्यो जोडी हो जसले जोडफल -6 दिन्छ।
\left(8x^{2}-12x\right)+\left(6x-9\right)
8x^{2}-6x-9 लाई \left(8x^{2}-12x\right)+\left(6x-9\right) को रूपमा पुन: लेख्नुहोस्।
4x\left(2x-3\right)+3\left(2x-3\right)
4x लाई पहिलो र 3 लाई दोस्रो समूहमा सन्दर्भ लिनुहोस्।
\left(2x-3\right)\left(4x+3\right)
वितरक गुण प्रयोग गरेर समान टर्म 2x-3 खण्डिकरण गर्नुहोस्।
8x^{2}-6x-9=0
क्वाड्रेटिक पोलिनोमियललाई ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) रूपान्तरणको प्रयोग गरेर खण्डिकरण गर्न सकिन्छ, जहाँ x_{1} र x_{2} क्वाड्रेटिक समिकरण ax^{2}+bx+c=0 को समाधान हो।
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 8\left(-9\right)}}{2\times 8}
ax^{2}+bx+c=0 रूपका सबै समीकरणहरू वर्ग सूत्र: \frac{-b±\sqrt{b^{2}-4ac}}{2a} प्रयोग गरेर हल गर्न सकिन्छ। एउटा, ± जोड हँदा र अर्को घटाउ हुँदा वर्ग सूत्रले दुईवटा समाधानहरू दिन्छ।
x=\frac{-\left(-6\right)±\sqrt{36-4\times 8\left(-9\right)}}{2\times 8}
-6 वर्ग गर्नुहोस्।
x=\frac{-\left(-6\right)±\sqrt{36-32\left(-9\right)}}{2\times 8}
-4 लाई 8 पटक गुणन गर्नुहोस्।
x=\frac{-\left(-6\right)±\sqrt{36+288}}{2\times 8}
-32 लाई -9 पटक गुणन गर्नुहोस्।
x=\frac{-\left(-6\right)±\sqrt{324}}{2\times 8}
288 मा 36 जोड्नुहोस्
x=\frac{-\left(-6\right)±18}{2\times 8}
324 को वर्गमूल निकाल्नुहोस्।
x=\frac{6±18}{2\times 8}
-6 विपरीत 6हो।
x=\frac{6±18}{16}
2 लाई 8 पटक गुणन गर्नुहोस्।
x=\frac{24}{16}
अब ± प्लस मानेर x=\frac{6±18}{16} समीकरणलाई हल गर्नुहोस्। 18 मा 6 जोड्नुहोस्
x=\frac{3}{2}
8 लाई झिकेर र रद्द गरेर, भिनन \frac{24}{16} लाई तल्लो टर्ममा घटाउनुहोस्।
x=-\frac{12}{16}
अब ± माइनस मानेर x=\frac{6±18}{16} समीकरणलाई हल गर्नुहोस्। 6 बाट 18 घटाउनुहोस्।
x=-\frac{3}{4}
4 लाई झिकेर र रद्द गरेर, भिनन \frac{-12}{16} लाई तल्लो टर्ममा घटाउनुहोस्।
8x^{2}-6x-9=8\left(x-\frac{3}{2}\right)\left(x-\left(-\frac{3}{4}\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) को प्रयोग गरेर मौलिक अभिव्यञ्जकलाई खण्डिकरण गर्नुहोस्। x_{1} को लागि \frac{3}{2} र x_{2} को लागि -\frac{3}{4} प्रतिस्थापित गर्नुहोस्।
8x^{2}-6x-9=8\left(x-\frac{3}{2}\right)\left(x+\frac{3}{4}\right)
p-\left(-q\right) देखि p+q को स्वरूपमा रहेका सबै अभिव्यञ्जकहरूलाई सरल गर्नुहोस्।
8x^{2}-6x-9=8\times \frac{2x-3}{2}\left(x+\frac{3}{4}\right)
साझा हर पत्ता लगाइ र अंश घटाएर x बाट \frac{3}{2} घटाउनुहोस्। त्यसपछि सम्भव भएमा भिन्नलाई न्यूनतम पदमा झार्नुहोस्।
8x^{2}-6x-9=8\times \frac{2x-3}{2}\times \frac{4x+3}{4}
साझा हर फेला पारेर तथा अंशहरूलाई जोडेर \frac{3}{4} लाई x मा जोड्नुहोस्। त्यसपछि सम्भव भएमा भिन्नलाई न्यूनतम पदमा झार्नुहोस्।
8x^{2}-6x-9=8\times \frac{\left(2x-3\right)\left(4x+3\right)}{2\times 4}
अंश पटकले अंशलाई र हर पटकलाई हरले गुणन गरी \frac{2x-3}{2} लाई \frac{4x+3}{4} पटक गुणन गर्नुहोस्। त्यसपछि सम्भव भएसम्म न्यूनतम पदहरूमा भिन्नलाई झार्नुहोस्।
8x^{2}-6x-9=8\times \frac{\left(2x-3\right)\left(4x+3\right)}{8}
2 लाई 4 पटक गुणन गर्नुहोस्।
8x^{2}-6x-9=\left(2x-3\right)\left(4x+3\right)
8 र 8 मा सबैभन्दा ठूलो साझा गुणनखण्ड 8 रद्द गर्नुहोस्।