गुणन खण्ड
\left(8x-3\right)^{2}
मूल्याङ्कन गर्नुहोस्
\left(8x-3\right)^{2}
ग्राफ
साझेदारी गर्नुहोस्
क्लिपबोर्डमा प्रतिलिपि गरियो
a+b=-48 ab=64\times 9=576
एक्सप्रेसनलाई समूहमा राखेर फ्याक्टर निकाल्नुहोस्। सर्वप्रथम, एक्सप्रेसनलाई 64x^{2}+ax+bx+9 को रूपमा पुन: लेख्न आवश्यक छ। a र b पत्ता लगाउन, समाधान गर्नका लागि प्रणाली सेटअप गर्नुहोस्।
-1,-576 -2,-288 -3,-192 -4,-144 -6,-96 -8,-72 -9,-64 -12,-48 -16,-36 -18,-32 -24,-24
ab सकारात्मक भएको हुनाले, a र b को समान चिन्ह हुन्छ। a+b नकारात्मक भएको हुनाले, a र b दुबै नकारात्मक हुन्छन्। गुणनफल 576 दिने सबै पूर्ण संख्याहरूलाई सूचीबद्ध गर्नुहोस्।
-1-576=-577 -2-288=-290 -3-192=-195 -4-144=-148 -6-96=-102 -8-72=-80 -9-64=-73 -12-48=-60 -16-36=-52 -18-32=-50 -24-24=-48
प्रत्येक जोडीका लागि जोडफल गणना गर्नुहोस्।
a=-24 b=-24
समाधान त्यो जोडी हो जसले जोडफल -48 दिन्छ।
\left(64x^{2}-24x\right)+\left(-24x+9\right)
64x^{2}-48x+9 लाई \left(64x^{2}-24x\right)+\left(-24x+9\right) को रूपमा पुन: लेख्नुहोस्।
8x\left(8x-3\right)-3\left(8x-3\right)
8x लाई पहिलो र -3 लाई दोस्रो समूहमा सन्दर्भ लिनुहोस्।
\left(8x-3\right)\left(8x-3\right)
वितरक गुण प्रयोग गरेर समान टर्म 8x-3 खण्डिकरण गर्नुहोस्।
\left(8x-3\right)^{2}
द्विपदीय वर्गको रूपमा पूर्नलेखन गर्नुहोस्।
factor(64x^{2}-48x+9)
त्रिपदीयमा त्रिपदीयको वर्गको रूप हुन्छ संभवत: यसलाई साझा गुणन खण्डले गुणन गरिन्छ। मुख्य तथा पछिल्ला पदहरूको वर्गमूल पत्ता लगाएर त्रिपदीय वर्गहरूको गुणन खण्ड निकाल्न सकिन्छ।
gcf(64,-48,9)=1
गुणांकहरूको महत्तम समपर्वतक पत्ता लगाउनुहोस्।
\sqrt{64x^{2}}=8x
मुख्य पद 64x^{2} को वर्गमूल पत्ता लगाउनुहोस्।
\sqrt{9}=3
पछिल्लो पद 9 को वर्गमूल पत्ता लगाउनुहोस्।
\left(8x-3\right)^{2}
त्रिपदीय वर्ग द्विपदीय वर्ग हो जुन त्रिपदीय वर्गको मध्यम पदको चिन्हले यसको चिन्ह निर्धारण गरेका मुख्य तथा पछिल्ला पदहरूको वर्गमूलको योगफल वा फरक हुन्छ।
64x^{2}-48x+9=0
क्वाड्रेटिक पोलिनोमियललाई ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) रूपान्तरणको प्रयोग गरेर खण्डिकरण गर्न सकिन्छ, जहाँ x_{1} र x_{2} क्वाड्रेटिक समिकरण ax^{2}+bx+c=0 को समाधान हो।
x=\frac{-\left(-48\right)±\sqrt{\left(-48\right)^{2}-4\times 64\times 9}}{2\times 64}
ax^{2}+bx+c=0 रूपका सबै समीकरणहरू वर्ग सूत्र: \frac{-b±\sqrt{b^{2}-4ac}}{2a} प्रयोग गरेर हल गर्न सकिन्छ। एउटा, ± जोड हँदा र अर्को घटाउ हुँदा वर्ग सूत्रले दुईवटा समाधानहरू दिन्छ।
x=\frac{-\left(-48\right)±\sqrt{2304-4\times 64\times 9}}{2\times 64}
-48 वर्ग गर्नुहोस्।
x=\frac{-\left(-48\right)±\sqrt{2304-256\times 9}}{2\times 64}
-4 लाई 64 पटक गुणन गर्नुहोस्।
x=\frac{-\left(-48\right)±\sqrt{2304-2304}}{2\times 64}
-256 लाई 9 पटक गुणन गर्नुहोस्।
x=\frac{-\left(-48\right)±\sqrt{0}}{2\times 64}
-2304 मा 2304 जोड्नुहोस्
x=\frac{-\left(-48\right)±0}{2\times 64}
0 को वर्गमूल निकाल्नुहोस्।
x=\frac{48±0}{2\times 64}
-48 विपरीत 48हो।
x=\frac{48±0}{128}
2 लाई 64 पटक गुणन गर्नुहोस्।
64x^{2}-48x+9=64\left(x-\frac{3}{8}\right)\left(x-\frac{3}{8}\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) को प्रयोग गरेर मौलिक अभिव्यञ्जकलाई खण्डिकरण गर्नुहोस्। x_{1} को लागि \frac{3}{8} र x_{2} को लागि \frac{3}{8} प्रतिस्थापित गर्नुहोस्।
64x^{2}-48x+9=64\times \frac{8x-3}{8}\left(x-\frac{3}{8}\right)
साझा हर पत्ता लगाइ र अंश घटाएर x बाट \frac{3}{8} घटाउनुहोस्। त्यसपछि सम्भव भएमा भिन्नलाई न्यूनतम पदमा झार्नुहोस्।
64x^{2}-48x+9=64\times \frac{8x-3}{8}\times \frac{8x-3}{8}
साझा हर पत्ता लगाइ र अंश घटाएर x बाट \frac{3}{8} घटाउनुहोस्। त्यसपछि सम्भव भएमा भिन्नलाई न्यूनतम पदमा झार्नुहोस्।
64x^{2}-48x+9=64\times \frac{\left(8x-3\right)\left(8x-3\right)}{8\times 8}
अंश पटकले अंशलाई र हर पटकलाई हरले गुणन गरी \frac{8x-3}{8} लाई \frac{8x-3}{8} पटक गुणन गर्नुहोस्। त्यसपछि सम्भव भएसम्म न्यूनतम पदहरूमा भिन्नलाई झार्नुहोस्।
64x^{2}-48x+9=64\times \frac{\left(8x-3\right)\left(8x-3\right)}{64}
8 लाई 8 पटक गुणन गर्नुहोस्।
64x^{2}-48x+9=\left(8x-3\right)\left(8x-3\right)
64 र 64 मा सबैभन्दा ठूलो साझा गुणनखण्ड 64 रद्द गर्नुहोस्।
उदाहरणहरू[सम्पादन गर्ने]
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिति
4 \sin \theta \cos \theta = 2 \sin \theta
रैखिक समीकरण
y = 3x + 4
अंकगणित
699 * 533
म्याट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालिक समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
भिन्नता
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमाहरू
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}