गुणन खण्ड
\left(8v+3\right)^{2}
मूल्याङ्कन गर्नुहोस्
\left(8v+3\right)^{2}
साझेदारी गर्नुहोस्
क्लिपबोर्डमा प्रतिलिपि गरियो
a+b=48 ab=64\times 9=576
एक्सप्रेसनलाई समूहमा राखेर फ्याक्टर निकाल्नुहोस्। सर्वप्रथम, एक्सप्रेसनलाई 64v^{2}+av+bv+9 को रूपमा पुन: लेख्न आवश्यक छ। a र b पत्ता लगाउन, समाधान गर्नका लागि प्रणाली सेटअप गर्नुहोस्।
1,576 2,288 3,192 4,144 6,96 8,72 9,64 12,48 16,36 18,32 24,24
ab सकारात्मक भएको हुनाले, a र b को समान चिन्ह हुन्छ। a+b सकारात्मक भएको हुनाले, a र b दुबै सकारात्मक हुन्छन्। गुणनफल 576 दिने सबै पूर्ण संख्याहरूलाई सूचीबद्ध गर्नुहोस्।
1+576=577 2+288=290 3+192=195 4+144=148 6+96=102 8+72=80 9+64=73 12+48=60 16+36=52 18+32=50 24+24=48
प्रत्येक जोडीका लागि जोडफल गणना गर्नुहोस्।
a=24 b=24
समाधान त्यो जोडी हो जसले जोडफल 48 दिन्छ।
\left(64v^{2}+24v\right)+\left(24v+9\right)
64v^{2}+48v+9 लाई \left(64v^{2}+24v\right)+\left(24v+9\right) को रूपमा पुन: लेख्नुहोस्।
8v\left(8v+3\right)+3\left(8v+3\right)
8v लाई पहिलो र 3 लाई दोस्रो समूहमा सन्दर्भ लिनुहोस्।
\left(8v+3\right)\left(8v+3\right)
वितरक गुण प्रयोग गरेर समान टर्म 8v+3 खण्डिकरण गर्नुहोस्।
\left(8v+3\right)^{2}
द्विपदीय वर्गको रूपमा पूर्नलेखन गर्नुहोस्।
factor(64v^{2}+48v+9)
त्रिपदीयमा त्रिपदीयको वर्गको रूप हुन्छ संभवत: यसलाई साझा गुणन खण्डले गुणन गरिन्छ। मुख्य तथा पछिल्ला पदहरूको वर्गमूल पत्ता लगाएर त्रिपदीय वर्गहरूको गुणन खण्ड निकाल्न सकिन्छ।
gcf(64,48,9)=1
गुणांकहरूको महत्तम समपर्वतक पत्ता लगाउनुहोस्।
\sqrt{64v^{2}}=8v
मुख्य पद 64v^{2} को वर्गमूल पत्ता लगाउनुहोस्।
\sqrt{9}=3
पछिल्लो पद 9 को वर्गमूल पत्ता लगाउनुहोस्।
\left(8v+3\right)^{2}
त्रिपदीय वर्ग द्विपदीय वर्ग हो जुन त्रिपदीय वर्गको मध्यम पदको चिन्हले यसको चिन्ह निर्धारण गरेका मुख्य तथा पछिल्ला पदहरूको वर्गमूलको योगफल वा फरक हुन्छ।
64v^{2}+48v+9=0
क्वाड्रेटिक पोलिनोमियललाई ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) रूपान्तरणको प्रयोग गरेर खण्डिकरण गर्न सकिन्छ, जहाँ x_{1} र x_{2} क्वाड्रेटिक समिकरण ax^{2}+bx+c=0 को समाधान हो।
v=\frac{-48±\sqrt{48^{2}-4\times 64\times 9}}{2\times 64}
ax^{2}+bx+c=0 रूपका सबै समीकरणहरू वर्ग सूत्र: \frac{-b±\sqrt{b^{2}-4ac}}{2a} प्रयोग गरेर हल गर्न सकिन्छ। एउटा, ± जोड हँदा र अर्को घटाउ हुँदा वर्ग सूत्रले दुईवटा समाधानहरू दिन्छ।
v=\frac{-48±\sqrt{2304-4\times 64\times 9}}{2\times 64}
48 वर्ग गर्नुहोस्।
v=\frac{-48±\sqrt{2304-256\times 9}}{2\times 64}
-4 लाई 64 पटक गुणन गर्नुहोस्।
v=\frac{-48±\sqrt{2304-2304}}{2\times 64}
-256 लाई 9 पटक गुणन गर्नुहोस्।
v=\frac{-48±\sqrt{0}}{2\times 64}
-2304 मा 2304 जोड्नुहोस्
v=\frac{-48±0}{2\times 64}
0 को वर्गमूल निकाल्नुहोस्।
v=\frac{-48±0}{128}
2 लाई 64 पटक गुणन गर्नुहोस्।
64v^{2}+48v+9=64\left(v-\left(-\frac{3}{8}\right)\right)\left(v-\left(-\frac{3}{8}\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) को प्रयोग गरेर मौलिक अभिव्यञ्जकलाई खण्डिकरण गर्नुहोस्। x_{1} को लागि -\frac{3}{8} र x_{2} को लागि -\frac{3}{8} प्रतिस्थापित गर्नुहोस्।
64v^{2}+48v+9=64\left(v+\frac{3}{8}\right)\left(v+\frac{3}{8}\right)
p-\left(-q\right) देखि p+q को स्वरूपमा रहेका सबै अभिव्यञ्जकहरूलाई सरल गर्नुहोस्।
64v^{2}+48v+9=64\times \frac{8v+3}{8}\left(v+\frac{3}{8}\right)
साझा हर फेला पारेर तथा अंशहरूलाई जोडेर \frac{3}{8} लाई v मा जोड्नुहोस्। त्यसपछि सम्भव भएमा भिन्नलाई न्यूनतम पदमा झार्नुहोस्।
64v^{2}+48v+9=64\times \frac{8v+3}{8}\times \frac{8v+3}{8}
साझा हर फेला पारेर तथा अंशहरूलाई जोडेर \frac{3}{8} लाई v मा जोड्नुहोस्। त्यसपछि सम्भव भएमा भिन्नलाई न्यूनतम पदमा झार्नुहोस्।
64v^{2}+48v+9=64\times \frac{\left(8v+3\right)\left(8v+3\right)}{8\times 8}
अंश पटकले अंशलाई र हर पटकलाई हरले गुणन गरी \frac{8v+3}{8} लाई \frac{8v+3}{8} पटक गुणन गर्नुहोस्। त्यसपछि सम्भव भएसम्म न्यूनतम पदहरूमा भिन्नलाई झार्नुहोस्।
64v^{2}+48v+9=64\times \frac{\left(8v+3\right)\left(8v+3\right)}{64}
8 लाई 8 पटक गुणन गर्नुहोस्।
64v^{2}+48v+9=\left(8v+3\right)\left(8v+3\right)
64 र 64 मा सबैभन्दा ठूलो साझा गुणनखण्ड 64 रद्द गर्नुहोस्।
उदाहरणहरू[सम्पादन गर्ने]
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिति
4 \sin \theta \cos \theta = 2 \sin \theta
रैखिक समीकरण
y = 3x + 4
अंकगणित
699 * 533
म्याट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालिक समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
भिन्नता
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमाहरू
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}