मुख्य सामग्रीमा स्किप गर्नुहोस्
गुणन खण्ड
Tick mark Image
मूल्याङ्कन गर्नुहोस्
Tick mark Image
ग्राफ

वेब खोजीबाट समान समस्याहरू

साझेदारी गर्नुहोस्

3\left(2x^{2}+x-3\right)
3 को गुणन खण्ड निकाल्नुहोस्।
a+b=1 ab=2\left(-3\right)=-6
मानौं 2x^{2}+x-3। एक्सप्रेसनलाई समूहमा राखेर फ्याक्टर निकाल्नुहोस्। सर्वप्रथम, एक्सप्रेसनलाई 2x^{2}+ax+bx-3 को रूपमा पुन: लेख्न आवश्यक छ। a र b पत्ता लगाउन, समाधान गर्नका लागि प्रणाली सेटअप गर्नुहोस्।
-1,6 -2,3
ab नकारात्मक भएको हुनाले, a र b को विपरीत चिन्ह हुन्छ। a+b सकारात्मक भएको हुनाले, सकारात्मक नम्बरको यथार्थ मान नकारात्मकको भन्दा धेरै हुन्छ। गुणनफल -6 दिने सबै पूर्ण संख्याहरूलाई सूचीबद्ध गर्नुहोस्।
-1+6=5 -2+3=1
प्रत्येक जोडीका लागि जोडफल गणना गर्नुहोस्।
a=-2 b=3
समाधान त्यो जोडी हो जसले जोडफल 1 दिन्छ।
\left(2x^{2}-2x\right)+\left(3x-3\right)
2x^{2}+x-3 लाई \left(2x^{2}-2x\right)+\left(3x-3\right) को रूपमा पुन: लेख्नुहोस्।
2x\left(x-1\right)+3\left(x-1\right)
2x लाई पहिलो र 3 लाई दोस्रो समूहमा सन्दर्भ लिनुहोस्।
\left(x-1\right)\left(2x+3\right)
वितरक गुण प्रयोग गरेर समान टर्म x-1 खण्डिकरण गर्नुहोस्।
3\left(x-1\right)\left(2x+3\right)
पूर्णतया खण्डीकरण गरिएको अभिव्यञ्जक पुन: लेख्नुहोस्।
6x^{2}+3x-9=0
क्वाड्रेटिक पोलिनोमियललाई ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) रूपान्तरणको प्रयोग गरेर खण्डिकरण गर्न सकिन्छ, जहाँ x_{1} र x_{2} क्वाड्रेटिक समिकरण ax^{2}+bx+c=0 को समाधान हो।
x=\frac{-3±\sqrt{3^{2}-4\times 6\left(-9\right)}}{2\times 6}
ax^{2}+bx+c=0 रूपका सबै समीकरणहरू वर्ग सूत्र: \frac{-b±\sqrt{b^{2}-4ac}}{2a} प्रयोग गरेर हल गर्न सकिन्छ। एउटा, ± जोड हँदा र अर्को घटाउ हुँदा वर्ग सूत्रले दुईवटा समाधानहरू दिन्छ।
x=\frac{-3±\sqrt{9-4\times 6\left(-9\right)}}{2\times 6}
3 वर्ग गर्नुहोस्।
x=\frac{-3±\sqrt{9-24\left(-9\right)}}{2\times 6}
-4 लाई 6 पटक गुणन गर्नुहोस्।
x=\frac{-3±\sqrt{9+216}}{2\times 6}
-24 लाई -9 पटक गुणन गर्नुहोस्।
x=\frac{-3±\sqrt{225}}{2\times 6}
216 मा 9 जोड्नुहोस्
x=\frac{-3±15}{2\times 6}
225 को वर्गमूल निकाल्नुहोस्।
x=\frac{-3±15}{12}
2 लाई 6 पटक गुणन गर्नुहोस्।
x=\frac{12}{12}
अब ± प्लस मानेर x=\frac{-3±15}{12} समीकरणलाई हल गर्नुहोस्। 15 मा -3 जोड्नुहोस्
x=1
12 लाई 12 ले भाग गर्नुहोस्।
x=-\frac{18}{12}
अब ± माइनस मानेर x=\frac{-3±15}{12} समीकरणलाई हल गर्नुहोस्। -3 बाट 15 घटाउनुहोस्।
x=-\frac{3}{2}
6 लाई झिकेर र रद्द गरेर, भिनन \frac{-18}{12} लाई तल्लो टर्ममा घटाउनुहोस्।
6x^{2}+3x-9=6\left(x-1\right)\left(x-\left(-\frac{3}{2}\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) को प्रयोग गरेर मौलिक अभिव्यञ्जकलाई खण्डिकरण गर्नुहोस्। x_{1} को लागि 1 र x_{2} को लागि -\frac{3}{2} प्रतिस्थापित गर्नुहोस्।
6x^{2}+3x-9=6\left(x-1\right)\left(x+\frac{3}{2}\right)
p-\left(-q\right) देखि p+q को स्वरूपमा रहेका सबै अभिव्यञ्जकहरूलाई सरल गर्नुहोस्।
6x^{2}+3x-9=6\left(x-1\right)\times \frac{2x+3}{2}
साझा हर फेला पारेर तथा अंशहरूलाई जोडेर \frac{3}{2} लाई x मा जोड्नुहोस्। त्यसपछि सम्भव भएमा भिन्नलाई न्यूनतम पदमा झार्नुहोस्।
6x^{2}+3x-9=3\left(x-1\right)\left(2x+3\right)
6 र 2 मा सबैभन्दा ठूलो साझा गुणनखण्ड 2 रद्द गर्नुहोस्।