मुख्य सामग्रीमा स्किप गर्नुहोस्
गुणन खण्ड
Tick mark Image
मूल्याङ्कन गर्नुहोस्
Tick mark Image
ग्राफ

वेब खोजीबाट समान समस्याहरू

साझेदारी गर्नुहोस्

a+b=-1 ab=6\left(-1\right)=-6
एक्सप्रेसनलाई समूहमा राखेर फ्याक्टर निकाल्नुहोस्। सर्वप्रथम, एक्सप्रेसनलाई 6x^{2}+ax+bx-1 को रूपमा पुन: लेख्न आवश्यक छ। a र b पत्ता लगाउन, समाधान गर्नका लागि प्रणाली सेटअप गर्नुहोस्।
1,-6 2,-3
ab नकारात्मक भएको हुनाले, a र b को विपरीत चिन्ह हुन्छ। a+b नकारात्मक भएको हुनाले, नकारात्मक नम्बरको यथार्थ मान सकारात्मकको भन्दा धेरै हुन्छ। गुणनफल -6 दिने सबै पूर्ण संख्याहरूलाई सूचीबद्ध गर्नुहोस्।
1-6=-5 2-3=-1
प्रत्येक जोडीका लागि जोडफल गणना गर्नुहोस्।
a=-3 b=2
समाधान त्यो जोडी हो जसले जोडफल -1 दिन्छ।
\left(6x^{2}-3x\right)+\left(2x-1\right)
6x^{2}-x-1 लाई \left(6x^{2}-3x\right)+\left(2x-1\right) को रूपमा पुन: लेख्नुहोस्।
3x\left(2x-1\right)+2x-1
6x^{2}-3x मा 3x खण्डिकरण गर्नुहोस्।
\left(2x-1\right)\left(3x+1\right)
वितरक गुण प्रयोग गरेर समान टर्म 2x-1 खण्डिकरण गर्नुहोस्।
6x^{2}-x-1=0
क्वाड्रेटिक पोलिनोमियललाई ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) रूपान्तरणको प्रयोग गरेर खण्डिकरण गर्न सकिन्छ, जहाँ x_{1} र x_{2} क्वाड्रेटिक समिकरण ax^{2}+bx+c=0 को समाधान हो।
x=\frac{-\left(-1\right)±\sqrt{1-4\times 6\left(-1\right)}}{2\times 6}
ax^{2}+bx+c=0 रूपका सबै समीकरणहरू वर्ग सूत्र: \frac{-b±\sqrt{b^{2}-4ac}}{2a} प्रयोग गरेर हल गर्न सकिन्छ। एउटा, ± जोड हँदा र अर्को घटाउ हुँदा वर्ग सूत्रले दुईवटा समाधानहरू दिन्छ।
x=\frac{-\left(-1\right)±\sqrt{1-24\left(-1\right)}}{2\times 6}
-4 लाई 6 पटक गुणन गर्नुहोस्।
x=\frac{-\left(-1\right)±\sqrt{1+24}}{2\times 6}
-24 लाई -1 पटक गुणन गर्नुहोस्।
x=\frac{-\left(-1\right)±\sqrt{25}}{2\times 6}
24 मा 1 जोड्नुहोस्
x=\frac{-\left(-1\right)±5}{2\times 6}
25 को वर्गमूल निकाल्नुहोस्।
x=\frac{1±5}{2\times 6}
-1 विपरीत 1हो।
x=\frac{1±5}{12}
2 लाई 6 पटक गुणन गर्नुहोस्।
x=\frac{6}{12}
अब ± प्लस मानेर x=\frac{1±5}{12} समीकरणलाई हल गर्नुहोस्। 5 मा 1 जोड्नुहोस्
x=\frac{1}{2}
6 लाई झिकेर र रद्द गरेर, भिनन \frac{6}{12} लाई तल्लो टर्ममा घटाउनुहोस्।
x=-\frac{4}{12}
अब ± माइनस मानेर x=\frac{1±5}{12} समीकरणलाई हल गर्नुहोस्। 1 बाट 5 घटाउनुहोस्।
x=-\frac{1}{3}
4 लाई झिकेर र रद्द गरेर, भिनन \frac{-4}{12} लाई तल्लो टर्ममा घटाउनुहोस्।
6x^{2}-x-1=6\left(x-\frac{1}{2}\right)\left(x-\left(-\frac{1}{3}\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) को प्रयोग गरेर मौलिक अभिव्यञ्जकलाई खण्डिकरण गर्नुहोस्। x_{1} को लागि \frac{1}{2} र x_{2} को लागि -\frac{1}{3} प्रतिस्थापित गर्नुहोस्।
6x^{2}-x-1=6\left(x-\frac{1}{2}\right)\left(x+\frac{1}{3}\right)
p-\left(-q\right) देखि p+q को स्वरूपमा रहेका सबै अभिव्यञ्जकहरूलाई सरल गर्नुहोस्।
6x^{2}-x-1=6\times \frac{2x-1}{2}\left(x+\frac{1}{3}\right)
साझा हर पत्ता लगाइ र अंश घटाएर x बाट \frac{1}{2} घटाउनुहोस्। त्यसपछि सम्भव भएमा भिन्नलाई न्यूनतम पदमा झार्नुहोस्।
6x^{2}-x-1=6\times \frac{2x-1}{2}\times \frac{3x+1}{3}
साझा हर फेला पारेर तथा अंशहरूलाई जोडेर \frac{1}{3} लाई x मा जोड्नुहोस्। त्यसपछि सम्भव भएमा भिन्नलाई न्यूनतम पदमा झार्नुहोस्।
6x^{2}-x-1=6\times \frac{\left(2x-1\right)\left(3x+1\right)}{2\times 3}
अंश पटकले अंशलाई र हर पटकलाई हरले गुणन गरी \frac{2x-1}{2} लाई \frac{3x+1}{3} पटक गुणन गर्नुहोस्। त्यसपछि सम्भव भएसम्म न्यूनतम पदहरूमा भिन्नलाई झार्नुहोस्।
6x^{2}-x-1=6\times \frac{\left(2x-1\right)\left(3x+1\right)}{6}
2 लाई 3 पटक गुणन गर्नुहोस्।
6x^{2}-x-1=\left(2x-1\right)\left(3x+1\right)
6 र 6 मा सबैभन्दा ठूलो साझा गुणनखण्ड 6 रद्द गर्नुहोस्।