मुख्य सामग्रीमा स्किप गर्नुहोस्
गुणन खण्ड
Tick mark Image
मूल्याङ्कन गर्नुहोस्
Tick mark Image
ग्राफ
प्रश्नोत्तरी
Polynomial

वेब खोजीबाट समान समस्याहरू

साझेदारी गर्नुहोस्

a+b=-23 ab=6\left(-4\right)=-24
एक्सप्रेसनलाई समूहमा राखेर फ्याक्टर निकाल्नुहोस्। सर्वप्रथम, एक्सप्रेसनलाई 6x^{2}+ax+bx-4 को रूपमा पुन: लेख्न आवश्यक छ। a र b पत्ता लगाउन, समाधान गर्नका लागि प्रणाली सेटअप गर्नुहोस्।
1,-24 2,-12 3,-8 4,-6
ab नकारात्मक भएको हुनाले, a र b को विपरीत चिन्ह हुन्छ। a+b नकारात्मक भएको हुनाले, नकारात्मक नम्बरको यथार्थ मान सकारात्मकको भन्दा धेरै हुन्छ। गुणनफल -24 दिने सबै पूर्ण संख्याहरूलाई सूचीबद्ध गर्नुहोस्।
1-24=-23 2-12=-10 3-8=-5 4-6=-2
प्रत्येक जोडीका लागि जोडफल गणना गर्नुहोस्।
a=-24 b=1
समाधान त्यो जोडी हो जसले जोडफल -23 दिन्छ।
\left(6x^{2}-24x\right)+\left(x-4\right)
6x^{2}-23x-4 लाई \left(6x^{2}-24x\right)+\left(x-4\right) को रूपमा पुन: लेख्नुहोस्।
6x\left(x-4\right)+x-4
6x^{2}-24x मा 6x खण्डिकरण गर्नुहोस्।
\left(x-4\right)\left(6x+1\right)
वितरक गुण प्रयोग गरेर समान टर्म x-4 खण्डिकरण गर्नुहोस्।
6x^{2}-23x-4=0
क्वाड्रेटिक पोलिनोमियललाई ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) रूपान्तरणको प्रयोग गरेर खण्डिकरण गर्न सकिन्छ, जहाँ x_{1} र x_{2} क्वाड्रेटिक समिकरण ax^{2}+bx+c=0 को समाधान हो।
x=\frac{-\left(-23\right)±\sqrt{\left(-23\right)^{2}-4\times 6\left(-4\right)}}{2\times 6}
ax^{2}+bx+c=0 रूपका सबै समीकरणहरू वर्ग सूत्र: \frac{-b±\sqrt{b^{2}-4ac}}{2a} प्रयोग गरेर हल गर्न सकिन्छ। एउटा, ± जोड हँदा र अर्को घटाउ हुँदा वर्ग सूत्रले दुईवटा समाधानहरू दिन्छ।
x=\frac{-\left(-23\right)±\sqrt{529-4\times 6\left(-4\right)}}{2\times 6}
-23 वर्ग गर्नुहोस्।
x=\frac{-\left(-23\right)±\sqrt{529-24\left(-4\right)}}{2\times 6}
-4 लाई 6 पटक गुणन गर्नुहोस्।
x=\frac{-\left(-23\right)±\sqrt{529+96}}{2\times 6}
-24 लाई -4 पटक गुणन गर्नुहोस्।
x=\frac{-\left(-23\right)±\sqrt{625}}{2\times 6}
96 मा 529 जोड्नुहोस्
x=\frac{-\left(-23\right)±25}{2\times 6}
625 को वर्गमूल निकाल्नुहोस्।
x=\frac{23±25}{2\times 6}
-23 विपरीत 23हो।
x=\frac{23±25}{12}
2 लाई 6 पटक गुणन गर्नुहोस्।
x=\frac{48}{12}
अब ± प्लस मानेर x=\frac{23±25}{12} समीकरणलाई हल गर्नुहोस्। 25 मा 23 जोड्नुहोस्
x=4
48 लाई 12 ले भाग गर्नुहोस्।
x=-\frac{2}{12}
अब ± माइनस मानेर x=\frac{23±25}{12} समीकरणलाई हल गर्नुहोस्। 23 बाट 25 घटाउनुहोस्।
x=-\frac{1}{6}
2 लाई झिकेर र रद्द गरेर, भिनन \frac{-2}{12} लाई तल्लो टर्ममा घटाउनुहोस्।
6x^{2}-23x-4=6\left(x-4\right)\left(x-\left(-\frac{1}{6}\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) को प्रयोग गरेर मौलिक अभिव्यञ्जकलाई खण्डिकरण गर्नुहोस्। x_{1} को लागि 4 र x_{2} को लागि -\frac{1}{6} प्रतिस्थापित गर्नुहोस्।
6x^{2}-23x-4=6\left(x-4\right)\left(x+\frac{1}{6}\right)
p-\left(-q\right) देखि p+q को स्वरूपमा रहेका सबै अभिव्यञ्जकहरूलाई सरल गर्नुहोस्।
6x^{2}-23x-4=6\left(x-4\right)\times \frac{6x+1}{6}
साझा हर फेला पारेर तथा अंशहरूलाई जोडेर \frac{1}{6} लाई x मा जोड्नुहोस्। त्यसपछि सम्भव भएमा भिन्नलाई न्यूनतम पदमा झार्नुहोस्।
6x^{2}-23x-4=\left(x-4\right)\left(6x+1\right)
6 र 6 मा सबैभन्दा ठूलो साझा गुणनखण्ड 6 रद्द गर्नुहोस्।