गुणन खण्ड
\left(2x-5\right)\left(3x-2\right)
मूल्याङ्कन गर्नुहोस्
\left(2x-5\right)\left(3x-2\right)
ग्राफ
साझेदारी गर्नुहोस्
क्लिपबोर्डमा प्रतिलिपि गरियो
a+b=-19 ab=6\times 10=60
एक्सप्रेसनलाई समूहमा राखेर फ्याक्टर निकाल्नुहोस्। सर्वप्रथम, एक्सप्रेसनलाई 6x^{2}+ax+bx+10 को रूपमा पुन: लेख्न आवश्यक छ। a र b पत्ता लगाउन, समाधान गर्नका लागि प्रणाली सेटअप गर्नुहोस्।
-1,-60 -2,-30 -3,-20 -4,-15 -5,-12 -6,-10
ab सकारात्मक भएको हुनाले, a र b को समान चिन्ह हुन्छ। a+b नकारात्मक भएको हुनाले, a र b दुबै नकारात्मक हुन्छन्। गुणनफल 60 दिने सबै पूर्ण संख्याहरूलाई सूचीबद्ध गर्नुहोस्।
-1-60=-61 -2-30=-32 -3-20=-23 -4-15=-19 -5-12=-17 -6-10=-16
प्रत्येक जोडीका लागि जोडफल गणना गर्नुहोस्।
a=-15 b=-4
समाधान त्यो जोडी हो जसले जोडफल -19 दिन्छ।
\left(6x^{2}-15x\right)+\left(-4x+10\right)
6x^{2}-19x+10 लाई \left(6x^{2}-15x\right)+\left(-4x+10\right) को रूपमा पुन: लेख्नुहोस्।
3x\left(2x-5\right)-2\left(2x-5\right)
3x लाई पहिलो र -2 लाई दोस्रो समूहमा सन्दर्भ लिनुहोस्।
\left(2x-5\right)\left(3x-2\right)
वितरक गुण प्रयोग गरेर समान टर्म 2x-5 खण्डिकरण गर्नुहोस्।
6x^{2}-19x+10=0
क्वाड्रेटिक पोलिनोमियललाई ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) रूपान्तरणको प्रयोग गरेर खण्डिकरण गर्न सकिन्छ, जहाँ x_{1} र x_{2} क्वाड्रेटिक समिकरण ax^{2}+bx+c=0 को समाधान हो।
x=\frac{-\left(-19\right)±\sqrt{\left(-19\right)^{2}-4\times 6\times 10}}{2\times 6}
ax^{2}+bx+c=0 रूपका सबै समीकरणहरू वर्ग सूत्र: \frac{-b±\sqrt{b^{2}-4ac}}{2a} प्रयोग गरेर हल गर्न सकिन्छ। एउटा, ± जोड हँदा र अर्को घटाउ हुँदा वर्ग सूत्रले दुईवटा समाधानहरू दिन्छ।
x=\frac{-\left(-19\right)±\sqrt{361-4\times 6\times 10}}{2\times 6}
-19 वर्ग गर्नुहोस्।
x=\frac{-\left(-19\right)±\sqrt{361-24\times 10}}{2\times 6}
-4 लाई 6 पटक गुणन गर्नुहोस्।
x=\frac{-\left(-19\right)±\sqrt{361-240}}{2\times 6}
-24 लाई 10 पटक गुणन गर्नुहोस्।
x=\frac{-\left(-19\right)±\sqrt{121}}{2\times 6}
-240 मा 361 जोड्नुहोस्
x=\frac{-\left(-19\right)±11}{2\times 6}
121 को वर्गमूल निकाल्नुहोस्।
x=\frac{19±11}{2\times 6}
-19 विपरीत 19हो।
x=\frac{19±11}{12}
2 लाई 6 पटक गुणन गर्नुहोस्।
x=\frac{30}{12}
अब ± प्लस मानेर x=\frac{19±11}{12} समीकरणलाई हल गर्नुहोस्। 11 मा 19 जोड्नुहोस्
x=\frac{5}{2}
6 लाई झिकेर र रद्द गरेर, भिनन \frac{30}{12} लाई तल्लो टर्ममा घटाउनुहोस्।
x=\frac{8}{12}
अब ± माइनस मानेर x=\frac{19±11}{12} समीकरणलाई हल गर्नुहोस्। 19 बाट 11 घटाउनुहोस्।
x=\frac{2}{3}
4 लाई झिकेर र रद्द गरेर, भिनन \frac{8}{12} लाई तल्लो टर्ममा घटाउनुहोस्।
6x^{2}-19x+10=6\left(x-\frac{5}{2}\right)\left(x-\frac{2}{3}\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) को प्रयोग गरेर मौलिक अभिव्यञ्जकलाई खण्डिकरण गर्नुहोस्। x_{1} को लागि \frac{5}{2} र x_{2} को लागि \frac{2}{3} प्रतिस्थापित गर्नुहोस्।
6x^{2}-19x+10=6\times \frac{2x-5}{2}\left(x-\frac{2}{3}\right)
साझा हर पत्ता लगाइ र अंश घटाएर x बाट \frac{5}{2} घटाउनुहोस्। त्यसपछि सम्भव भएमा भिन्नलाई न्यूनतम पदमा झार्नुहोस्।
6x^{2}-19x+10=6\times \frac{2x-5}{2}\times \frac{3x-2}{3}
साझा हर पत्ता लगाइ र अंश घटाएर x बाट \frac{2}{3} घटाउनुहोस्। त्यसपछि सम्भव भएमा भिन्नलाई न्यूनतम पदमा झार्नुहोस्।
6x^{2}-19x+10=6\times \frac{\left(2x-5\right)\left(3x-2\right)}{2\times 3}
अंश पटकले अंशलाई र हर पटकलाई हरले गुणन गरी \frac{2x-5}{2} लाई \frac{3x-2}{3} पटक गुणन गर्नुहोस्। त्यसपछि सम्भव भएसम्म न्यूनतम पदहरूमा भिन्नलाई झार्नुहोस्।
6x^{2}-19x+10=6\times \frac{\left(2x-5\right)\left(3x-2\right)}{6}
2 लाई 3 पटक गुणन गर्नुहोस्।
6x^{2}-19x+10=\left(2x-5\right)\left(3x-2\right)
6 र 6 मा सबैभन्दा ठूलो साझा गुणनखण्ड 6 रद्द गर्नुहोस्।
उदाहरणहरू[सम्पादन गर्ने]
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिति
4 \sin \theta \cos \theta = 2 \sin \theta
रैखिक समीकरण
y = 3x + 4
अंकगणित
699 * 533
म्याट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालिक समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
भिन्नता
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमाहरू
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}