गुणन खण्ड
4\left(5x^{2}+3\right)\left(25x^{4}-15x^{2}+9\right)x^{9}
मूल्याङ्कन गर्नुहोस्
500x^{15}+108x^{9}
ग्राफ
साझेदारी गर्नुहोस्
क्लिपबोर्डमा प्रतिलिपि गरियो
4\left(125x^{15}+27x^{9}\right)
4 को गुणन खण्ड निकाल्नुहोस्।
x^{9}\left(125x^{6}+27\right)
मानौं 125x^{15}+27x^{9}। x^{9} को गुणन खण्ड निकाल्नुहोस्।
\left(5x^{2}+3\right)\left(25x^{4}-15x^{2}+9\right)
मानौं 125x^{6}+27। 125x^{6}+27 लाई \left(5x^{2}\right)^{3}+3^{3} को रूपमा पुन: लेख्नुहोस्। घनहरूबीचको जोड निम्न नियमको प्रयोग गरेर खण्डिकरण गर्न सकिन्छ: a^{3}+b^{3}=\left(a+b\right)\left(a^{2}-ab+b^{2}\right)।
4x^{9}\left(5x^{2}+3\right)\left(25x^{4}-15x^{2}+9\right)
पूर्णतया खण्डीकरण गरिएको अभिव्यञ्जक पुन: लेख्नुहोस्। निम्न बहुपदीय खण्डहरूका कुनै पनि संयुक्तिक मूलहरू नभएकाले यिनको खण्डीकरण गरिएन: 5x^{2}+3,25x^{4}-15x^{2}+9।
उदाहरणहरू[सम्पादन गर्ने]
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिति
4 \sin \theta \cos \theta = 2 \sin \theta
रैखिक समीकरण
y = 3x + 4
अंकगणित
699 * 533
म्याट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालिक समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
भिन्नता
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमाहरू
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}