गुणन खण्ड
\left(x-2\right)\left(5x-2\right)
मूल्याङ्कन गर्नुहोस्
\left(x-2\right)\left(5x-2\right)
ग्राफ
साझेदारी गर्नुहोस्
क्लिपबोर्डमा प्रतिलिपि गरियो
a+b=-12 ab=5\times 4=20
एक्सप्रेसनलाई समूहमा राखेर फ्याक्टर निकाल्नुहोस्। सर्वप्रथम, एक्सप्रेसनलाई 5x^{2}+ax+bx+4 को रूपमा पुन: लेख्न आवश्यक छ। a र b पत्ता लगाउन, समाधान गर्नका लागि प्रणाली सेटअप गर्नुहोस्।
-1,-20 -2,-10 -4,-5
ab सकारात्मक भएको हुनाले, a र b को समान चिन्ह हुन्छ। a+b नकारात्मक भएको हुनाले, a र b दुबै नकारात्मक हुन्छन्। गुणनफल 20 दिने सबै पूर्ण संख्याहरूलाई सूचीबद्ध गर्नुहोस्।
-1-20=-21 -2-10=-12 -4-5=-9
प्रत्येक जोडीका लागि जोडफल गणना गर्नुहोस्।
a=-10 b=-2
समाधान त्यो जोडी हो जसले जोडफल -12 दिन्छ।
\left(5x^{2}-10x\right)+\left(-2x+4\right)
5x^{2}-12x+4 लाई \left(5x^{2}-10x\right)+\left(-2x+4\right) को रूपमा पुन: लेख्नुहोस्।
5x\left(x-2\right)-2\left(x-2\right)
5x लाई पहिलो र -2 लाई दोस्रो समूहमा सन्दर्भ लिनुहोस्।
\left(x-2\right)\left(5x-2\right)
वितरक गुण प्रयोग गरेर समान टर्म x-2 खण्डिकरण गर्नुहोस्।
5x^{2}-12x+4=0
क्वाड्रेटिक पोलिनोमियललाई ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) रूपान्तरणको प्रयोग गरेर खण्डिकरण गर्न सकिन्छ, जहाँ x_{1} र x_{2} क्वाड्रेटिक समिकरण ax^{2}+bx+c=0 को समाधान हो।
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 5\times 4}}{2\times 5}
ax^{2}+bx+c=0 रूपका सबै समीकरणहरू वर्ग सूत्र: \frac{-b±\sqrt{b^{2}-4ac}}{2a} प्रयोग गरेर हल गर्न सकिन्छ। एउटा, ± जोड हँदा र अर्को घटाउ हुँदा वर्ग सूत्रले दुईवटा समाधानहरू दिन्छ।
x=\frac{-\left(-12\right)±\sqrt{144-4\times 5\times 4}}{2\times 5}
-12 वर्ग गर्नुहोस्।
x=\frac{-\left(-12\right)±\sqrt{144-20\times 4}}{2\times 5}
-4 लाई 5 पटक गुणन गर्नुहोस्।
x=\frac{-\left(-12\right)±\sqrt{144-80}}{2\times 5}
-20 लाई 4 पटक गुणन गर्नुहोस्।
x=\frac{-\left(-12\right)±\sqrt{64}}{2\times 5}
-80 मा 144 जोड्नुहोस्
x=\frac{-\left(-12\right)±8}{2\times 5}
64 को वर्गमूल निकाल्नुहोस्।
x=\frac{12±8}{2\times 5}
-12 विपरीत 12हो।
x=\frac{12±8}{10}
2 लाई 5 पटक गुणन गर्नुहोस्।
x=\frac{20}{10}
अब ± प्लस मानेर x=\frac{12±8}{10} समीकरणलाई हल गर्नुहोस्। 8 मा 12 जोड्नुहोस्
x=2
20 लाई 10 ले भाग गर्नुहोस्।
x=\frac{4}{10}
अब ± माइनस मानेर x=\frac{12±8}{10} समीकरणलाई हल गर्नुहोस्। 12 बाट 8 घटाउनुहोस्।
x=\frac{2}{5}
2 लाई झिकेर र रद्द गरेर, भिनन \frac{4}{10} लाई तल्लो टर्ममा घटाउनुहोस्।
5x^{2}-12x+4=5\left(x-2\right)\left(x-\frac{2}{5}\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) को प्रयोग गरेर मौलिक अभिव्यञ्जकलाई खण्डिकरण गर्नुहोस्। x_{1} को लागि 2 र x_{2} को लागि \frac{2}{5} प्रतिस्थापित गर्नुहोस्।
5x^{2}-12x+4=5\left(x-2\right)\times \frac{5x-2}{5}
साझा हर पत्ता लगाइ र अंश घटाएर x बाट \frac{2}{5} घटाउनुहोस्। त्यसपछि सम्भव भएमा भिन्नलाई न्यूनतम पदमा झार्नुहोस्।
5x^{2}-12x+4=\left(x-2\right)\left(5x-2\right)
5 र 5 मा सबैभन्दा ठूलो साझा गुणनखण्ड 5 रद्द गर्नुहोस्।
उदाहरणहरू[सम्पादन गर्ने]
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिति
4 \sin \theta \cos \theta = 2 \sin \theta
रैखिक समीकरण
y = 3x + 4
अंकगणित
699 * 533
म्याट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालिक समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
भिन्नता
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमाहरू
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}