मुख्य सामग्रीमा स्किप गर्नुहोस्
गुणन खण्ड
Tick mark Image
मूल्याङ्कन गर्नुहोस्
Tick mark Image
ग्राफ

वेब खोजीबाट समान समस्याहरू

साझेदारी गर्नुहोस्

a+b=6 ab=5\left(-8\right)=-40
एक्सप्रेसनलाई समूहमा राखेर फ्याक्टर निकाल्नुहोस्। सर्वप्रथम, एक्सप्रेसनलाई 5x^{2}+ax+bx-8 को रूपमा पुन: लेख्न आवश्यक छ। a र b पत्ता लगाउन, समाधान गर्नका लागि प्रणाली सेटअप गर्नुहोस्।
-1,40 -2,20 -4,10 -5,8
ab नकारात्मक भएको हुनाले, a र b को विपरीत चिन्ह हुन्छ। a+b सकारात्मक भएको हुनाले, सकारात्मक नम्बरको यथार्थ मान नकारात्मकको भन्दा धेरै हुन्छ। गुणनफल -40 दिने सबै पूर्ण संख्याहरूलाई सूचीबद्ध गर्नुहोस्।
-1+40=39 -2+20=18 -4+10=6 -5+8=3
प्रत्येक जोडीका लागि जोडफल गणना गर्नुहोस्।
a=-4 b=10
समाधान त्यो जोडी हो जसले जोडफल 6 दिन्छ।
\left(5x^{2}-4x\right)+\left(10x-8\right)
5x^{2}+6x-8 लाई \left(5x^{2}-4x\right)+\left(10x-8\right) को रूपमा पुन: लेख्नुहोस्।
x\left(5x-4\right)+2\left(5x-4\right)
x लाई पहिलो र 2 लाई दोस्रो समूहमा सन्दर्भ लिनुहोस्।
\left(5x-4\right)\left(x+2\right)
वितरक गुण प्रयोग गरेर समान टर्म 5x-4 खण्डिकरण गर्नुहोस्।
5x^{2}+6x-8=0
क्वाड्रेटिक पोलिनोमियललाई ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) रूपान्तरणको प्रयोग गरेर खण्डिकरण गर्न सकिन्छ, जहाँ x_{1} र x_{2} क्वाड्रेटिक समिकरण ax^{2}+bx+c=0 को समाधान हो।
x=\frac{-6±\sqrt{6^{2}-4\times 5\left(-8\right)}}{2\times 5}
ax^{2}+bx+c=0 रूपका सबै समीकरणहरू वर्ग सूत्र: \frac{-b±\sqrt{b^{2}-4ac}}{2a} प्रयोग गरेर हल गर्न सकिन्छ। एउटा, ± जोड हँदा र अर्को घटाउ हुँदा वर्ग सूत्रले दुईवटा समाधानहरू दिन्छ।
x=\frac{-6±\sqrt{36-4\times 5\left(-8\right)}}{2\times 5}
6 वर्ग गर्नुहोस्।
x=\frac{-6±\sqrt{36-20\left(-8\right)}}{2\times 5}
-4 लाई 5 पटक गुणन गर्नुहोस्।
x=\frac{-6±\sqrt{36+160}}{2\times 5}
-20 लाई -8 पटक गुणन गर्नुहोस्।
x=\frac{-6±\sqrt{196}}{2\times 5}
160 मा 36 जोड्नुहोस्
x=\frac{-6±14}{2\times 5}
196 को वर्गमूल निकाल्नुहोस्।
x=\frac{-6±14}{10}
2 लाई 5 पटक गुणन गर्नुहोस्।
x=\frac{8}{10}
अब ± प्लस मानेर x=\frac{-6±14}{10} समीकरणलाई हल गर्नुहोस्। 14 मा -6 जोड्नुहोस्
x=\frac{4}{5}
2 लाई झिकेर र रद्द गरेर, भिनन \frac{8}{10} लाई तल्लो टर्ममा घटाउनुहोस्।
x=-\frac{20}{10}
अब ± माइनस मानेर x=\frac{-6±14}{10} समीकरणलाई हल गर्नुहोस्। -6 बाट 14 घटाउनुहोस्।
x=-2
-20 लाई 10 ले भाग गर्नुहोस्।
5x^{2}+6x-8=5\left(x-\frac{4}{5}\right)\left(x-\left(-2\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) को प्रयोग गरेर मौलिक अभिव्यञ्जकलाई खण्डिकरण गर्नुहोस्। x_{1} को लागि \frac{4}{5} र x_{2} को लागि -2 प्रतिस्थापित गर्नुहोस्।
5x^{2}+6x-8=5\left(x-\frac{4}{5}\right)\left(x+2\right)
p-\left(-q\right) देखि p+q को स्वरूपमा रहेका सबै अभिव्यञ्जकहरूलाई सरल गर्नुहोस्।
5x^{2}+6x-8=5\times \frac{5x-4}{5}\left(x+2\right)
साझा हर पत्ता लगाइ र अंश घटाएर x बाट \frac{4}{5} घटाउनुहोस्। त्यसपछि सम्भव भएमा भिन्नलाई न्यूनतम पदमा झार्नुहोस्।
5x^{2}+6x-8=\left(5x-4\right)\left(x+2\right)
5 र 5 मा सबैभन्दा ठूलो साझा गुणनखण्ड 5 रद्द गर्नुहोस्।