गुणन खण्ड
5\left(s+1\right)\left(s+10\right)
मूल्याङ्कन गर्नुहोस्
5\left(s+1\right)\left(s+10\right)
प्रश्नोत्तरी
Polynomial
5 s ^ { 2 } + 55 s + 50
साझेदारी गर्नुहोस्
क्लिपबोर्डमा प्रतिलिपि गरियो
5\left(s^{2}+11s+10\right)
5 को गुणन खण्ड निकाल्नुहोस्।
a+b=11 ab=1\times 10=10
मानौं s^{2}+11s+10। एक्सप्रेसनलाई समूहमा राखेर फ्याक्टर निकाल्नुहोस्। सर्वप्रथम, एक्सप्रेसनलाई s^{2}+as+bs+10 को रूपमा पुन: लेख्न आवश्यक छ। a र b पत्ता लगाउन, समाधान गर्नका लागि प्रणाली सेटअप गर्नुहोस्।
1,10 2,5
ab सकारात्मक भएको हुनाले, a र b को समान चिन्ह हुन्छ। a+b सकारात्मक भएको हुनाले, a र b दुबै सकारात्मक हुन्छन्। गुणनफल 10 दिने सबै पूर्ण संख्याहरूलाई सूचीबद्ध गर्नुहोस्।
1+10=11 2+5=7
प्रत्येक जोडीका लागि जोडफल गणना गर्नुहोस्।
a=1 b=10
समाधान त्यो जोडी हो जसले जोडफल 11 दिन्छ।
\left(s^{2}+s\right)+\left(10s+10\right)
s^{2}+11s+10 लाई \left(s^{2}+s\right)+\left(10s+10\right) को रूपमा पुन: लेख्नुहोस्।
s\left(s+1\right)+10\left(s+1\right)
s लाई पहिलो र 10 लाई दोस्रो समूहमा सन्दर्भ लिनुहोस्।
\left(s+1\right)\left(s+10\right)
वितरक गुण प्रयोग गरेर समान टर्म s+1 खण्डिकरण गर्नुहोस्।
5\left(s+1\right)\left(s+10\right)
पूर्णतया खण्डीकरण गरिएको अभिव्यञ्जक पुन: लेख्नुहोस्।
5s^{2}+55s+50=0
क्वाड्रेटिक पोलिनोमियललाई ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) रूपान्तरणको प्रयोग गरेर खण्डिकरण गर्न सकिन्छ, जहाँ x_{1} र x_{2} क्वाड्रेटिक समिकरण ax^{2}+bx+c=0 को समाधान हो।
s=\frac{-55±\sqrt{55^{2}-4\times 5\times 50}}{2\times 5}
ax^{2}+bx+c=0 रूपका सबै समीकरणहरू वर्ग सूत्र: \frac{-b±\sqrt{b^{2}-4ac}}{2a} प्रयोग गरेर हल गर्न सकिन्छ। एउटा, ± जोड हँदा र अर्को घटाउ हुँदा वर्ग सूत्रले दुईवटा समाधानहरू दिन्छ।
s=\frac{-55±\sqrt{3025-4\times 5\times 50}}{2\times 5}
55 वर्ग गर्नुहोस्।
s=\frac{-55±\sqrt{3025-20\times 50}}{2\times 5}
-4 लाई 5 पटक गुणन गर्नुहोस्।
s=\frac{-55±\sqrt{3025-1000}}{2\times 5}
-20 लाई 50 पटक गुणन गर्नुहोस्।
s=\frac{-55±\sqrt{2025}}{2\times 5}
-1000 मा 3025 जोड्नुहोस्
s=\frac{-55±45}{2\times 5}
2025 को वर्गमूल निकाल्नुहोस्।
s=\frac{-55±45}{10}
2 लाई 5 पटक गुणन गर्नुहोस्।
s=-\frac{10}{10}
अब ± प्लस मानेर s=\frac{-55±45}{10} समीकरणलाई हल गर्नुहोस्। 45 मा -55 जोड्नुहोस्
s=-1
-10 लाई 10 ले भाग गर्नुहोस्।
s=-\frac{100}{10}
अब ± माइनस मानेर s=\frac{-55±45}{10} समीकरणलाई हल गर्नुहोस्। -55 बाट 45 घटाउनुहोस्।
s=-10
-100 लाई 10 ले भाग गर्नुहोस्।
5s^{2}+55s+50=5\left(s-\left(-1\right)\right)\left(s-\left(-10\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) को प्रयोग गरेर मौलिक अभिव्यञ्जकलाई खण्डिकरण गर्नुहोस्। x_{1} को लागि -1 र x_{2} को लागि -10 प्रतिस्थापित गर्नुहोस्।
5s^{2}+55s+50=5\left(s+1\right)\left(s+10\right)
p-\left(-q\right) देखि p+q को स्वरूपमा रहेका सबै अभिव्यञ्जकहरूलाई सरल गर्नुहोस्।
उदाहरणहरू[सम्पादन गर्ने]
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिति
4 \sin \theta \cos \theta = 2 \sin \theta
रैखिक समीकरण
y = 3x + 4
अंकगणित
699 * 533
म्याट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालिक समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
भिन्नता
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमाहरू
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}