मुख्य सामग्रीमा स्किप गर्नुहोस्
x को लागि हल गर्नुहोस्
Tick mark Image
ग्राफ

वेब खोजीबाट समान समस्याहरू

साझेदारी गर्नुहोस्

a+b=1 ab=5\left(-4\right)=-20
समीकरणको समाधान गर्न, बायाँ भागलाई समूहमा राखेर फ्याक्टर निकाल्नुहोस्। सर्वप्रथम, बायाँ भागलाई 5x^{2}+ax+bx-4 को रूपमा पुन: लेख्न आवश्यक हुन्छ। a र b पत्ता लगाउन, समाधान गर्नका लागि प्रणाली सेटअप गर्नुहोस्।
-1,20 -2,10 -4,5
ab नकारात्मक भएको हुनाले, a र b को विपरीत चिन्ह हुन्छ। a+b सकारात्मक भएको हुनाले, सकारात्मक नम्बरको यथार्थ मान नकारात्मकको भन्दा धेरै हुन्छ। गुणनफल -20 दिने सबै पूर्ण संख्याहरूलाई सूचीबद्ध गर्नुहोस्।
-1+20=19 -2+10=8 -4+5=1
प्रत्येक जोडीका लागि जोडफल गणना गर्नुहोस्।
a=-4 b=5
समाधान त्यो जोडी हो जसले जोडफल 1 दिन्छ।
\left(5x^{2}-4x\right)+\left(5x-4\right)
5x^{2}+x-4 लाई \left(5x^{2}-4x\right)+\left(5x-4\right) को रूपमा पुन: लेख्नुहोस्।
x\left(5x-4\right)+5x-4
5x^{2}-4x मा x खण्डिकरण गर्नुहोस्।
\left(5x-4\right)\left(x+1\right)
वितरक गुण प्रयोग गरेर समान टर्म 5x-4 खण्डिकरण गर्नुहोस्।
x=\frac{4}{5} x=-1
समीकरणको समाधान पत्ता लगाउन, 5x-4=0 र x+1=0 को समाधान गर्नुहोस्।
5x^{2}+x-4=0
ax^{2}+bx+c=0 रूपका सबै समीकरणहरू वर्ग सूत्र: \frac{-b±\sqrt{b^{2}-4ac}}{2a} प्रयोग गरेर हल गर्न सकिन्छ। एउटा, ± जोड हँदा र अर्को घटाउ हुँदा वर्ग सूत्रले दुईवटा समाधानहरू दिन्छ।
x=\frac{-1±\sqrt{1^{2}-4\times 5\left(-4\right)}}{2\times 5}
यो समीकरण मानक ढाँचामा छ: ax^{2}+bx+c=0। वर्ग सूत्र \frac{-b±\sqrt{b^{2}-4ac}}{2a} मा a लाई 5 ले, b लाई 1 ले र c लाई -4 ले प्रतिस्थापन गर्नुहोस्।
x=\frac{-1±\sqrt{1-4\times 5\left(-4\right)}}{2\times 5}
1 वर्ग गर्नुहोस्।
x=\frac{-1±\sqrt{1-20\left(-4\right)}}{2\times 5}
-4 लाई 5 पटक गुणन गर्नुहोस्।
x=\frac{-1±\sqrt{1+80}}{2\times 5}
-20 लाई -4 पटक गुणन गर्नुहोस्।
x=\frac{-1±\sqrt{81}}{2\times 5}
80 मा 1 जोड्नुहोस्
x=\frac{-1±9}{2\times 5}
81 को वर्गमूल निकाल्नुहोस्।
x=\frac{-1±9}{10}
2 लाई 5 पटक गुणन गर्नुहोस्।
x=\frac{8}{10}
अब ± प्लस मानेर x=\frac{-1±9}{10} समीकरणलाई हल गर्नुहोस्। 9 मा -1 जोड्नुहोस्
x=\frac{4}{5}
2 लाई झिकेर र रद्द गरेर, भिनन \frac{8}{10} लाई तल्लो टर्ममा घटाउनुहोस्।
x=-\frac{10}{10}
अब ± माइनस मानेर x=\frac{-1±9}{10} समीकरणलाई हल गर्नुहोस्। -1 बाट 9 घटाउनुहोस्।
x=-1
-10 लाई 10 ले भाग गर्नुहोस्।
x=\frac{4}{5} x=-1
अब समिकरण समाधान भएको छ।
5x^{2}+x-4=0
यो जस्ता वर्ग समीकरणहरूको वर्गलाई पूरा गरेर यिनीहरू हल हुन सक्छन्। वर्गलाई पूरा गर्नको लागि, समीकरण सुरुमा x^{2}+bx=c को रूपमा हुनुपर्छ।
5x^{2}+x-4-\left(-4\right)=-\left(-4\right)
समीकरणको दुबैतिर 4 जोड्नुहोस्।
5x^{2}+x=-\left(-4\right)
-4 लाई आफैबाट घटाउनाले 0 बाँकी रहन्छ।
5x^{2}+x=4
0 बाट -4 घटाउनुहोस्।
\frac{5x^{2}+x}{5}=\frac{4}{5}
दुबैतिर 5 ले भाग गर्नुहोस्।
x^{2}+\frac{1}{5}x=\frac{4}{5}
5 द्वारा भाग गर्नाले 5 द्वारा गुणा गरिएकोलाई फिर्ता गर्दछ।
x^{2}+\frac{1}{5}x+\left(\frac{1}{10}\right)^{2}=\frac{4}{5}+\left(\frac{1}{10}\right)^{2}
2 द्वारा \frac{1}{10} प्राप्त गर्न x पदको गुणाङ्कलाई \frac{1}{5} ले भाग गर्नुहोस्। त्यसपछि \frac{1}{10} को वर्गलाई समीकरणको दुबैतिर जोड्नुहोस्। यो चरणले समीकरणको बायाँ भागलाई पूर्ण वर्ग बनाउँछ।
x^{2}+\frac{1}{5}x+\frac{1}{100}=\frac{4}{5}+\frac{1}{100}
भिन्नको अंश र हर दुबैलाई वर्ग गरेर \frac{1}{10} लाई वर्ग गर्नुहोस्।
x^{2}+\frac{1}{5}x+\frac{1}{100}=\frac{81}{100}
साझा हर फेला पारेर तथा अंशहरूलाई जोडेर \frac{4}{5} लाई \frac{1}{100} मा जोड्नुहोस्। त्यसपछि सम्भव भएमा भिन्नलाई न्यूनतम पदमा झार्नुहोस्।
\left(x+\frac{1}{10}\right)^{2}=\frac{81}{100}
कारक x^{2}+\frac{1}{5}x+\frac{1}{100}। सामान्यतया, यदि x^{2}+bx+c एक उचित वर्ग हो भने यसलाई \left(x+\frac{b}{2}\right)^{2}को रूपमा कारक गर्न सकिन्छ।
\sqrt{\left(x+\frac{1}{10}\right)^{2}}=\sqrt{\frac{81}{100}}
समीकरणको दुबैतिरको वर्गमूल निकाल्नुहोस्।
x+\frac{1}{10}=\frac{9}{10} x+\frac{1}{10}=-\frac{9}{10}
सरल गर्नुहोस्।
x=\frac{4}{5} x=-1
समीकरणको दुबैतिरबाट \frac{1}{10} घटाउनुहोस्।