x, y को लागि हल गर्नुहोस्
x=-1
y=2
ग्राफ
प्रश्नोत्तरी
Simultaneous Equation
5 समस्याहरू यस प्रकार छन्:
4 x - 5 y = - 14 \text { and } 7 x + y = - 5
साझेदारी गर्नुहोस्
क्लिपबोर्डमा प्रतिलिपि गरियो
4x-5y=-14,7x+y=-5
प्रतिस्थापनको प्रयोग गरी जोडी समीकरणहरूको हल गर्न, पहिले एउटा चरको एउटा समीकरण हल गर्नुहोस्। त्यसपछि त्यो चरको मानलाई अर्को समीकरणमा प्रतिस्थापन गर्नुहोस्।
4x-5y=-14
समीकरणहरू मध्ये एउटा छान्नुहोस् र बराबर चिह्नको बायाँतिरको x लाई अलग गरी x का लागि हल गर्नुहोस्।
4x=5y-14
समीकरणको दुबैतिर 5y जोड्नुहोस्।
x=\frac{1}{4}\left(5y-14\right)
दुबैतिर 4 ले भाग गर्नुहोस्।
x=\frac{5}{4}y-\frac{7}{2}
\frac{1}{4} लाई 5y-14 पटक गुणन गर्नुहोस्।
7\left(\frac{5}{4}y-\frac{7}{2}\right)+y=-5
\frac{5y}{4}-\frac{7}{2} लाई x ले अर्को समीकरण 7x+y=-5 मा प्रतिस्थापन गर्नुहोस्।
\frac{35}{4}y-\frac{49}{2}+y=-5
7 लाई \frac{5y}{4}-\frac{7}{2} पटक गुणन गर्नुहोस्।
\frac{39}{4}y-\frac{49}{2}=-5
y मा \frac{35y}{4} जोड्नुहोस्
\frac{39}{4}y=\frac{39}{2}
समीकरणको दुबैतिर \frac{49}{2} जोड्नुहोस्।
y=2
समीकरणको दुबैतिर \frac{39}{4} ले भाग गर्नुहोस्, जुन दुबैतिर भिन्नको व्युत्क्रमानुपातिकले गुणन गरे बराबर हुन्छ।
x=\frac{5}{4}\times 2-\frac{7}{2}
x=\frac{5}{4}y-\frac{7}{2} मा y लाई 2 ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले x लाई सिधै हल गर्न सक्नुहुन्छ।
x=\frac{5-7}{2}
\frac{5}{4} लाई 2 पटक गुणन गर्नुहोस्।
x=-1
साझा हर फेला पारेर तथा अंशहरूलाई जोडेर -\frac{7}{2} लाई \frac{5}{2} मा जोड्नुहोस्। त्यसपछि सम्भव भएमा भिन्नलाई न्यूनतम पदमा झार्नुहोस्।
x=-1,y=2
अब प्रणाली समाधान भएको छ।
4x-5y=-14,7x+y=-5
समीकरणलाई स्तरीय रूपमा राख्नुहोस् र त्यसपछि समीकरणहरूको प्रणालीलाई हल गर्न मेट्रिक्सहरू प्रयोग गर्नुहोस्।
\left(\begin{matrix}4&-5\\7&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-14\\-5\end{matrix}\right)
समीकरणहरूलाई मेट्रिक्स ढाँचामा लेख्नुहोस्।
inverse(\left(\begin{matrix}4&-5\\7&1\end{matrix}\right))\left(\begin{matrix}4&-5\\7&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-5\\7&1\end{matrix}\right))\left(\begin{matrix}-14\\-5\end{matrix}\right)
समीकरणलाई \left(\begin{matrix}4&-5\\7&1\end{matrix}\right) को विपरीत म्याट्रिक्सले बायाँतिर गुणन गर्नुहोस्।
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-5\\7&1\end{matrix}\right))\left(\begin{matrix}-14\\-5\end{matrix}\right)
म्यार्टिक्सको उत्पादन र यसको विपरीत नै म्याट्रिक्सको पहिचान हो।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-5\\7&1\end{matrix}\right))\left(\begin{matrix}-14\\-5\end{matrix}\right)
बराबर चिन्हको बायाँ भागमा रहेका म्याट्रिक्सहरूलाई गुणन गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4-\left(-5\times 7\right)}&-\frac{-5}{4-\left(-5\times 7\right)}\\-\frac{7}{4-\left(-5\times 7\right)}&\frac{4}{4-\left(-5\times 7\right)}\end{matrix}\right)\left(\begin{matrix}-14\\-5\end{matrix}\right)
2\times 2 मेट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) का लागि, विपरीत मेट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) हो, त्यसैले मेट्रिक्स समिकरणलाई मेट्रिक्स गुणन समस्याका रूपमा पुन: लेख्न सकिन्छ।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{39}&\frac{5}{39}\\-\frac{7}{39}&\frac{4}{39}\end{matrix}\right)\left(\begin{matrix}-14\\-5\end{matrix}\right)
हिसाब गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{39}\left(-14\right)+\frac{5}{39}\left(-5\right)\\-\frac{7}{39}\left(-14\right)+\frac{4}{39}\left(-5\right)\end{matrix}\right)
मेट्रिक्सहरू गुणन गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1\\2\end{matrix}\right)
हिसाब गर्नुहोस्।
x=-1,y=2
मेट्रिक्स तत्त्वहरू x र y लाई ता्नुहोस्।
4x-5y=-14,7x+y=-5
निराकरण गरी हल गर्नको लागि, चरहरू मध्ये एउटा चरको गुणांक दुबै समीकरणहरूमा समान हुनुपर्छ जसले गर्दा अर्कोबाट एउटा समीकरण घटाउँदा चर काटिनेछ।
7\times 4x+7\left(-5\right)y=7\left(-14\right),4\times 7x+4y=4\left(-5\right)
4x र 7x लाई बराबर बनाउन, पहिलो समीकरणको प्रत्येक भागमा सबै पदहरूलाई 7 ले गुणन गर्नुहोस् र दोस्रोको प्रत्येक भागमा सबै पदहरूलाई 4 ले गुणन गर्नुहोस्।
28x-35y=-98,28x+4y=-20
सरल गर्नुहोस्।
28x-28x-35y-4y=-98+20
बराबर चिन्हको प्रत्येक भागमा समान पदहरूलाई घटाएर 28x-35y=-98 बाट 28x+4y=-20 घटाउनुहोस्।
-35y-4y=-98+20
-28x मा 28x जोड्नुहोस् समाधान हुन सक्ने एउटा मात्र चर भएको समीकरण छोड्दै 28x र -28x राशी रद्द हुन्छन्।
-39y=-98+20
-4y मा -35y जोड्नुहोस्
-39y=-78
20 मा -98 जोड्नुहोस्
y=2
दुबैतिर -39 ले भाग गर्नुहोस्।
7x+2=-5
7x+y=-5 मा y लाई 2 ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले x लाई सिधै हल गर्न सक्नुहुन्छ।
7x=-7
समीकरणको दुबैतिरबाट 2 घटाउनुहोस्।
x=-1
दुबैतिर 7 ले भाग गर्नुहोस्।
x=-1,y=2
अब प्रणाली समाधान भएको छ।
उदाहरणहरू[सम्पादन गर्ने]
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिति
4 \sin \theta \cos \theta = 2 \sin \theta
रैखिक समीकरण
y = 3x + 4
अंकगणित
699 * 533
म्याट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालिक समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
भिन्नता
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमाहरू
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}