मुख्य सामग्रीमा स्किप गर्नुहोस्
x, y को लागि हल गर्नुहोस्
Tick mark Image
ग्राफ

वेब खोजीबाट समान समस्याहरू

साझेदारी गर्नुहोस्

4x-3y=1,x+2y=3
प्रतिस्थापनको प्रयोग गरी जोडी समीकरणहरूको हल गर्न, पहिले एउटा चरको एउटा समीकरण हल गर्नुहोस्। त्यसपछि त्यो चरको मानलाई अर्को समीकरणमा प्रतिस्थापन गर्नुहोस्।
4x-3y=1
समीकरणहरू मध्ये एउटा छान्नुहोस् र बराबर चिह्नको बायाँतिरको x लाई अलग गरी x का लागि हल गर्नुहोस्।
4x=3y+1
समीकरणको दुबैतिर 3y जोड्नुहोस्।
x=\frac{1}{4}\left(3y+1\right)
दुबैतिर 4 ले भाग गर्नुहोस्।
x=\frac{3}{4}y+\frac{1}{4}
\frac{1}{4} लाई 3y+1 पटक गुणन गर्नुहोस्।
\frac{3}{4}y+\frac{1}{4}+2y=3
\frac{3y+1}{4} लाई x ले अर्को समीकरण x+2y=3 मा प्रतिस्थापन गर्नुहोस्।
\frac{11}{4}y+\frac{1}{4}=3
2y मा \frac{3y}{4} जोड्नुहोस्
\frac{11}{4}y=\frac{11}{4}
समीकरणको दुबैतिरबाट \frac{1}{4} घटाउनुहोस्।
y=1
समीकरणको दुबैतिर \frac{11}{4} ले भाग गर्नुहोस्, जुन दुबैतिर भिन्नको व्युत्क्रमानुपातिकले गुणन गरे बराबर हुन्छ।
x=\frac{3+1}{4}
x=\frac{3}{4}y+\frac{1}{4} मा y लाई 1 ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले x लाई सिधै हल गर्न सक्नुहुन्छ।
x=1
साझा हर फेला पारेर तथा अंशहरूलाई जोडेर \frac{1}{4} लाई \frac{3}{4} मा जोड्नुहोस्। त्यसपछि सम्भव भएमा भिन्नलाई न्यूनतम पदमा झार्नुहोस्।
x=1,y=1
अब प्रणाली समाधान भएको छ।
4x-3y=1,x+2y=3
समीकरणलाई स्तरीय रूपमा राख्नुहोस् र त्यसपछि समीकरणहरूको प्रणालीलाई हल गर्न मेट्रिक्सहरू प्रयोग गर्नुहोस्।
\left(\begin{matrix}4&-3\\1&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\3\end{matrix}\right)
समीकरणहरूलाई मेट्रिक्स ढाँचामा लेख्नुहोस्।
inverse(\left(\begin{matrix}4&-3\\1&2\end{matrix}\right))\left(\begin{matrix}4&-3\\1&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-3\\1&2\end{matrix}\right))\left(\begin{matrix}1\\3\end{matrix}\right)
समीकरणलाई \left(\begin{matrix}4&-3\\1&2\end{matrix}\right) को विपरीत म्याट्रिक्सले बायाँतिर गुणन गर्नुहोस्।
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-3\\1&2\end{matrix}\right))\left(\begin{matrix}1\\3\end{matrix}\right)
म्यार्टिक्सको उत्पादन र यसको विपरीत नै म्याट्रिक्सको पहिचान हो।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-3\\1&2\end{matrix}\right))\left(\begin{matrix}1\\3\end{matrix}\right)
बराबर चिन्हको बायाँ भागमा रहेका म्याट्रिक्सहरूलाई गुणन गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{4\times 2-\left(-3\right)}&-\frac{-3}{4\times 2-\left(-3\right)}\\-\frac{1}{4\times 2-\left(-3\right)}&\frac{4}{4\times 2-\left(-3\right)}\end{matrix}\right)\left(\begin{matrix}1\\3\end{matrix}\right)
2\times 2 मेट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) का लागि, विपरीत मेट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) हो, त्यसैले मेट्रिक्स समिकरणलाई मेट्रिक्स गुणन समस्याका रूपमा पुन: लेख्न सकिन्छ।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{11}&\frac{3}{11}\\-\frac{1}{11}&\frac{4}{11}\end{matrix}\right)\left(\begin{matrix}1\\3\end{matrix}\right)
हिसाब गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{11}+\frac{3}{11}\times 3\\-\frac{1}{11}+\frac{4}{11}\times 3\end{matrix}\right)
मेट्रिक्सहरू गुणन गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\1\end{matrix}\right)
हिसाब गर्नुहोस्।
x=1,y=1
मेट्रिक्स तत्त्वहरू x र y लाई ता्नुहोस्।
4x-3y=1,x+2y=3
निराकरण गरी हल गर्नको लागि, चरहरू मध्ये एउटा चरको गुणांक दुबै समीकरणहरूमा समान हुनुपर्छ जसले गर्दा अर्कोबाट एउटा समीकरण घटाउँदा चर काटिनेछ।
4x-3y=1,4x+4\times 2y=4\times 3
4x र x लाई बराबर बनाउन, पहिलो समीकरणको प्रत्येक भागमा सबै पदहरूलाई 1 ले गुणन गर्नुहोस् र दोस्रोको प्रत्येक भागमा सबै पदहरूलाई 4 ले गुणन गर्नुहोस्।
4x-3y=1,4x+8y=12
सरल गर्नुहोस्।
4x-4x-3y-8y=1-12
बराबर चिन्हको प्रत्येक भागमा समान पदहरूलाई घटाएर 4x-3y=1 बाट 4x+8y=12 घटाउनुहोस्।
-3y-8y=1-12
-4x मा 4x जोड्नुहोस् समाधान हुन सक्ने एउटा मात्र चर भएको समीकरण छोड्दै 4x र -4x राशी रद्द हुन्छन्।
-11y=1-12
-8y मा -3y जोड्नुहोस्
-11y=-11
-12 मा 1 जोड्नुहोस्
y=1
दुबैतिर -11 ले भाग गर्नुहोस्।
x+2=3
x+2y=3 मा y लाई 1 ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले x लाई सिधै हल गर्न सक्नुहुन्छ।
x=1
समीकरणको दुबैतिरबाट 2 घटाउनुहोस्।
x=1,y=1
अब प्रणाली समाधान भएको छ।