मुख्य सामग्रीमा स्किप गर्नुहोस्
गुणन खण्ड
Tick mark Image
मूल्याङ्कन गर्नुहोस्
Tick mark Image
ग्राफ

वेब खोजीबाट समान समस्याहरू

साझेदारी गर्नुहोस्

2\left(2x-x^{2}\right)
2 को गुणन खण्ड निकाल्नुहोस्।
x\left(2-x\right)
मानौं 2x-x^{2}। x को गुणन खण्ड निकाल्नुहोस्।
2x\left(-x+2\right)
पूर्णतया खण्डीकरण गरिएको अभिव्यञ्जक पुन: लेख्नुहोस्।
-2x^{2}+4x=0
क्वाड्रेटिक पोलिनोमियललाई ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) रूपान्तरणको प्रयोग गरेर खण्डिकरण गर्न सकिन्छ, जहाँ x_{1} र x_{2} क्वाड्रेटिक समिकरण ax^{2}+bx+c=0 को समाधान हो।
x=\frac{-4±\sqrt{4^{2}}}{2\left(-2\right)}
ax^{2}+bx+c=0 रूपका सबै समीकरणहरू वर्ग सूत्र: \frac{-b±\sqrt{b^{2}-4ac}}{2a} प्रयोग गरेर हल गर्न सकिन्छ। एउटा, ± जोड हँदा र अर्को घटाउ हुँदा वर्ग सूत्रले दुईवटा समाधानहरू दिन्छ।
x=\frac{-4±4}{2\left(-2\right)}
4^{2} को वर्गमूल निकाल्नुहोस्।
x=\frac{-4±4}{-4}
2 लाई -2 पटक गुणन गर्नुहोस्।
x=\frac{0}{-4}
अब ± प्लस मानेर x=\frac{-4±4}{-4} समीकरणलाई हल गर्नुहोस्। 4 मा -4 जोड्नुहोस्
x=0
0 लाई -4 ले भाग गर्नुहोस्।
x=-\frac{8}{-4}
अब ± माइनस मानेर x=\frac{-4±4}{-4} समीकरणलाई हल गर्नुहोस्। -4 बाट 4 घटाउनुहोस्।
x=2
-8 लाई -4 ले भाग गर्नुहोस्।
-2x^{2}+4x=-2x\left(x-2\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) को प्रयोग गरेर मौलिक अभिव्यञ्जकलाई खण्डिकरण गर्नुहोस्। x_{1} को लागि 0 र x_{2} को लागि 2 प्रतिस्थापित गर्नुहोस्।