x को लागि हल गर्नुहोस्
x = -\frac{3}{2} = -1\frac{1}{2} = -1.5
ग्राफ
साझेदारी गर्नुहोस्
क्लिपबोर्डमा प्रतिलिपि गरियो
4x^{2}+12x+9=0
4x लाई x+3 ले गुणा गर्नको लागि वितरणमूलक गुणा प्रयोग गर्नुहोस्।
a+b=12 ab=4\times 9=36
समीकरणको समाधान गर्न, बायाँ भागलाई समूहमा राखेर फ्याक्टर निकाल्नुहोस्। सर्वप्रथम, बायाँ भागलाई 4x^{2}+ax+bx+9 को रूपमा पुन: लेख्न आवश्यक हुन्छ। a र b पत्ता लगाउन, समाधान गर्नका लागि प्रणाली सेटअप गर्नुहोस्।
1,36 2,18 3,12 4,9 6,6
ab सकारात्मक भएको हुनाले, a र b को समान चिन्ह हुन्छ। a+b सकारात्मक भएको हुनाले, a र b दुबै सकारात्मक हुन्छन्। गुणनफल 36 दिने सबै पूर्ण संख्याहरूलाई सूचीबद्ध गर्नुहोस्।
1+36=37 2+18=20 3+12=15 4+9=13 6+6=12
प्रत्येक जोडीका लागि जोडफल गणना गर्नुहोस्।
a=6 b=6
समाधान त्यो जोडी हो जसले जोडफल 12 दिन्छ।
\left(4x^{2}+6x\right)+\left(6x+9\right)
4x^{2}+12x+9 लाई \left(4x^{2}+6x\right)+\left(6x+9\right) को रूपमा पुन: लेख्नुहोस्।
2x\left(2x+3\right)+3\left(2x+3\right)
2x लाई पहिलो र 3 लाई दोस्रो समूहमा सन्दर्भ लिनुहोस्।
\left(2x+3\right)\left(2x+3\right)
वितरक गुण प्रयोग गरेर समान टर्म 2x+3 खण्डिकरण गर्नुहोस्।
\left(2x+3\right)^{2}
द्विपदीय वर्गको रूपमा पूर्नलेखन गर्नुहोस्।
x=-\frac{3}{2}
समीकरण समाधान पत्ता लगाउन, 2x+3=0 को समाधान गर्नुहोस्।
4x^{2}+12x+9=0
4x लाई x+3 ले गुणा गर्नको लागि वितरणमूलक गुणा प्रयोग गर्नुहोस्।
x=\frac{-12±\sqrt{12^{2}-4\times 4\times 9}}{2\times 4}
यो समीकरण मानक ढाँचामा छ: ax^{2}+bx+c=0। वर्ग सूत्र \frac{-b±\sqrt{b^{2}-4ac}}{2a} मा a लाई 4 ले, b लाई 12 ले र c लाई 9 ले प्रतिस्थापन गर्नुहोस्।
x=\frac{-12±\sqrt{144-4\times 4\times 9}}{2\times 4}
12 वर्ग गर्नुहोस्।
x=\frac{-12±\sqrt{144-16\times 9}}{2\times 4}
-4 लाई 4 पटक गुणन गर्नुहोस्।
x=\frac{-12±\sqrt{144-144}}{2\times 4}
-16 लाई 9 पटक गुणन गर्नुहोस्।
x=\frac{-12±\sqrt{0}}{2\times 4}
-144 मा 144 जोड्नुहोस्
x=-\frac{12}{2\times 4}
0 को वर्गमूल निकाल्नुहोस्।
x=-\frac{12}{8}
2 लाई 4 पटक गुणन गर्नुहोस्।
x=-\frac{3}{2}
4 लाई झिकेर र रद्द गरेर, भिनन \frac{-12}{8} लाई तल्लो टर्ममा घटाउनुहोस्।
4x^{2}+12x+9=0
4x लाई x+3 ले गुणा गर्नको लागि वितरणमूलक गुणा प्रयोग गर्नुहोस्।
4x^{2}+12x=-9
दुवै छेउबाट 9 घटाउनुहोस्। शून्यबाट कुनै अंक घटाउँदा सोही अंक बराबरको ऋणात्मक परिणाम आउँछ।
\frac{4x^{2}+12x}{4}=-\frac{9}{4}
दुबैतिर 4 ले भाग गर्नुहोस्।
x^{2}+\frac{12}{4}x=-\frac{9}{4}
4 द्वारा भाग गर्नाले 4 द्वारा गुणा गरिएकोलाई फिर्ता गर्दछ।
x^{2}+3x=-\frac{9}{4}
12 लाई 4 ले भाग गर्नुहोस्।
x^{2}+3x+\left(\frac{3}{2}\right)^{2}=-\frac{9}{4}+\left(\frac{3}{2}\right)^{2}
2 द्वारा \frac{3}{2} प्राप्त गर्न x पदको गुणाङ्कलाई 3 ले भाग गर्नुहोस्। त्यसपछि \frac{3}{2} को वर्गलाई समीकरणको दुबैतिर जोड्नुहोस्। यो चरणले समीकरणको बायाँ भागलाई पूर्ण वर्ग बनाउँछ।
x^{2}+3x+\frac{9}{4}=\frac{-9+9}{4}
भिन्नको अंश र हर दुबैलाई वर्ग गरेर \frac{3}{2} लाई वर्ग गर्नुहोस्।
x^{2}+3x+\frac{9}{4}=0
साझा हर फेला पारेर तथा अंशहरूलाई जोडेर -\frac{9}{4} लाई \frac{9}{4} मा जोड्नुहोस्। त्यसपछि सम्भव भएमा भिन्नलाई न्यूनतम पदमा झार्नुहोस्।
\left(x+\frac{3}{2}\right)^{2}=0
कारक x^{2}+3x+\frac{9}{4}। सामान्यतया, यदि x^{2}+bx+c एक उचित वर्ग हो भने यसलाई \left(x+\frac{b}{2}\right)^{2}को रूपमा कारक गर्न सकिन्छ।
\sqrt{\left(x+\frac{3}{2}\right)^{2}}=\sqrt{0}
समीकरणको दुबैतिरको वर्गमूल निकाल्नुहोस्।
x+\frac{3}{2}=0 x+\frac{3}{2}=0
सरल गर्नुहोस्।
x=-\frac{3}{2} x=-\frac{3}{2}
समीकरणको दुबैतिरबाट \frac{3}{2} घटाउनुहोस्।
x=-\frac{3}{2}
अब समिकरण समाधान भएको छ। समाधानहरू उही हुन्।
उदाहरणहरू[सम्पादन गर्ने]
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिति
4 \sin \theta \cos \theta = 2 \sin \theta
रैखिक समीकरण
y = 3x + 4
अंकगणित
699 * 533
म्याट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालिक समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
भिन्नता
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमाहरू
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}