मुख्य सामग्रीमा स्किप गर्नुहोस्
x को लागि हल गर्नुहोस्
Tick mark Image
ग्राफ

वेब खोजीबाट समान समस्याहरू

साझेदारी गर्नुहोस्

a+b=-12 ab=4\times 9=36
समीकरणको समाधान गर्न, बायाँ भागलाई समूहमा राखेर फ्याक्टर निकाल्नुहोस्। सर्वप्रथम, बायाँ भागलाई 4x^{2}+ax+bx+9 को रूपमा पुन: लेख्न आवश्यक हुन्छ। a र b पत्ता लगाउन, समाधान गर्नका लागि प्रणाली सेटअप गर्नुहोस्।
-1,-36 -2,-18 -3,-12 -4,-9 -6,-6
ab सकारात्मक भएको हुनाले, a र b को समान चिन्ह हुन्छ। a+b नकारात्मक भएको हुनाले, a र b दुबै नकारात्मक हुन्छन्। गुणनफल 36 दिने सबै पूर्ण संख्याहरूलाई सूचीबद्ध गर्नुहोस्।
-1-36=-37 -2-18=-20 -3-12=-15 -4-9=-13 -6-6=-12
प्रत्येक जोडीका लागि जोडफल गणना गर्नुहोस्।
a=-6 b=-6
समाधान त्यो जोडी हो जसले जोडफल -12 दिन्छ।
\left(4x^{2}-6x\right)+\left(-6x+9\right)
4x^{2}-12x+9 लाई \left(4x^{2}-6x\right)+\left(-6x+9\right) को रूपमा पुन: लेख्नुहोस्।
2x\left(2x-3\right)-3\left(2x-3\right)
2x लाई पहिलो र -3 लाई दोस्रो समूहमा सन्दर्भ लिनुहोस्।
\left(2x-3\right)\left(2x-3\right)
वितरक गुण प्रयोग गरेर समान टर्म 2x-3 खण्डिकरण गर्नुहोस्।
\left(2x-3\right)^{2}
द्विपदीय वर्गको रूपमा पूर्नलेखन गर्नुहोस्।
x=\frac{3}{2}
समीकरण समाधान पत्ता लगाउन, 2x-3=0 को समाधान गर्नुहोस्।
4x^{2}-12x+9=0
ax^{2}+bx+c=0 रूपका सबै समीकरणहरू वर्ग सूत्र: \frac{-b±\sqrt{b^{2}-4ac}}{2a} प्रयोग गरेर हल गर्न सकिन्छ। एउटा, ± जोड हँदा र अर्को घटाउ हुँदा वर्ग सूत्रले दुईवटा समाधानहरू दिन्छ।
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 4\times 9}}{2\times 4}
यो समीकरण मानक ढाँचामा छ: ax^{2}+bx+c=0। वर्ग सूत्र \frac{-b±\sqrt{b^{2}-4ac}}{2a} मा a लाई 4 ले, b लाई -12 ले र c लाई 9 ले प्रतिस्थापन गर्नुहोस्।
x=\frac{-\left(-12\right)±\sqrt{144-4\times 4\times 9}}{2\times 4}
-12 वर्ग गर्नुहोस्।
x=\frac{-\left(-12\right)±\sqrt{144-16\times 9}}{2\times 4}
-4 लाई 4 पटक गुणन गर्नुहोस्।
x=\frac{-\left(-12\right)±\sqrt{144-144}}{2\times 4}
-16 लाई 9 पटक गुणन गर्नुहोस्।
x=\frac{-\left(-12\right)±\sqrt{0}}{2\times 4}
-144 मा 144 जोड्नुहोस्
x=-\frac{-12}{2\times 4}
0 को वर्गमूल निकाल्नुहोस्।
x=\frac{12}{2\times 4}
-12 विपरीत 12हो।
x=\frac{12}{8}
2 लाई 4 पटक गुणन गर्नुहोस्।
x=\frac{3}{2}
4 लाई झिकेर र रद्द गरेर, भिनन \frac{12}{8} लाई तल्लो टर्ममा घटाउनुहोस्।
4x^{2}-12x+9=0
यो जस्ता वर्ग समीकरणहरूको वर्गलाई पूरा गरेर यिनीहरू हल हुन सक्छन्। वर्गलाई पूरा गर्नको लागि, समीकरण सुरुमा x^{2}+bx=c को रूपमा हुनुपर्छ।
4x^{2}-12x+9-9=-9
समीकरणको दुबैतिरबाट 9 घटाउनुहोस्।
4x^{2}-12x=-9
9 लाई आफैबाट घटाउनाले 0 बाँकी रहन्छ।
\frac{4x^{2}-12x}{4}=-\frac{9}{4}
दुबैतिर 4 ले भाग गर्नुहोस्।
x^{2}+\left(-\frac{12}{4}\right)x=-\frac{9}{4}
4 द्वारा भाग गर्नाले 4 द्वारा गुणा गरिएकोलाई फिर्ता गर्दछ।
x^{2}-3x=-\frac{9}{4}
-12 लाई 4 ले भाग गर्नुहोस्।
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=-\frac{9}{4}+\left(-\frac{3}{2}\right)^{2}
2 द्वारा -\frac{3}{2} प्राप्त गर्न x पदको गुणाङ्कलाई -3 ले भाग गर्नुहोस्। त्यसपछि -\frac{3}{2} को वर्गलाई समीकरणको दुबैतिर जोड्नुहोस्। यो चरणले समीकरणको बायाँ भागलाई पूर्ण वर्ग बनाउँछ।
x^{2}-3x+\frac{9}{4}=\frac{-9+9}{4}
भिन्नको अंश र हर दुबैलाई वर्ग गरेर -\frac{3}{2} लाई वर्ग गर्नुहोस्।
x^{2}-3x+\frac{9}{4}=0
साझा हर फेला पारेर तथा अंशहरूलाई जोडेर -\frac{9}{4} लाई \frac{9}{4} मा जोड्नुहोस्। त्यसपछि सम्भव भएमा भिन्नलाई न्यूनतम पदमा झार्नुहोस्।
\left(x-\frac{3}{2}\right)^{2}=0
कारक x^{2}-3x+\frac{9}{4}। सामान्यतया, यदि x^{2}+bx+c एक उचित वर्ग हो भने यसलाई \left(x+\frac{b}{2}\right)^{2}को रूपमा कारक गर्न सकिन्छ।
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{0}
समीकरणको दुबैतिरको वर्गमूल निकाल्नुहोस्।
x-\frac{3}{2}=0 x-\frac{3}{2}=0
सरल गर्नुहोस्।
x=\frac{3}{2} x=\frac{3}{2}
समीकरणको दुबैतिर \frac{3}{2} जोड्नुहोस्।
x=\frac{3}{2}
अब समिकरण समाधान भएको छ। समाधानहरू उही हुन्।