t को लागि हल गर्नुहोस्
t = -\frac{\sqrt{66 \sqrt{6402319} - 30129}}{33} \approx -11.21087248
t = \frac{\sqrt{66 \sqrt{6402319} - 30129}}{33} \approx 11.21087248
साझेदारी गर्नुहोस्
क्लिपबोर्डमा प्रतिलिपि गरियो
33t^{2}+1826t-750779=0
t लाई t^{2} ले प्रतिस्थापन गर्नुहोस्।
t=\frac{-1826±\sqrt{1826^{2}-4\times 33\left(-750779\right)}}{2\times 33}
ax^{2}+bx+c=0 ढाँचाका सबै समीकरणहरूलाई क्वाड्रेटिक सूत्र प्रयोग गरी समाधन गर्न सकिन्छ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। क्वाड्रेटिक सूत्रमा a लाई 33 ले, b लाई 1826 ले, र c लाई -750779 ले प्रतिस्थापन गर्नुहोस्।
t=\frac{-1826±4\sqrt{6402319}}{66}
हिसाब गर्नुहोस्।
t=\frac{2\sqrt{6402319}}{33}-\frac{83}{3} t=-\frac{2\sqrt{6402319}}{33}-\frac{83}{3}
± प्लस र ± माइनस हुँदा समीकरण t=\frac{-1826±4\sqrt{6402319}}{66} लाई समाधान गर्नुहोस्।
t=\sqrt{\frac{2\sqrt{6402319}}{33}-\frac{83}{3}} t=-\sqrt{\frac{2\sqrt{6402319}}{33}-\frac{83}{3}}
t=t^{2} भएकाले, समाधानहरू धनात्मक t को t=±\sqrt{t} लाई मूल्याङ्कन गरेर प्राप्त गरिन्छ।
उदाहरणहरू[सम्पादन गर्ने]
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिति
4 \sin \theta \cos \theta = 2 \sin \theta
रैखिक समीकरण
y = 3x + 4
अंकगणित
699 * 533
म्याट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालिक समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
भिन्नता
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमाहरू
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}