मुख्य सामग्रीमा स्किप गर्नुहोस्
x को लागि हल गर्नुहोस्
Tick mark Image
ग्राफ

वेब खोजीबाट समान समस्याहरू

साझेदारी गर्नुहोस्

±\frac{1}{3},±1
संयुक्तिक मूलको सिद्धान्त अनुसार, बहुपरीयका सबै संयुक्तिक मूलहरू \frac{p}{q} को रूपमा हुन्छन्, जहाँ p ले स्थिर राशी -1 लाई भाग गर्छ र q ले प्रमुख गुणांक 3 लाई भाग गर्छ। सबै सम्भावित खण्डहरू \frac{p}{q} सूचीबद्ध गर्नुहोस्।
x=-\frac{1}{3}
सबै पूर्ण संख्याहरू प्रयोग गरेर सबैभन्दा सानो निरपेक्ष मानद्वारा सुरु हुने वर्गमूल फेला पार्नुहोस्। यदि पूर्ण संख्याका कुनै पनि वर्गमूल फेला पर्दैनन् भने, भिन्नहरू प्रयोग गर्नुहोस्।
x^{2}+x-1=0
खण्ड सम्बन्धी सिद्धान्त अनुसार, x-k हरेक मूल k को बहुपदीय खण्ड हो। x^{2}+x-1 प्राप्त गर्नको लागि 3x^{3}+4x^{2}-2x-1 लाई 3\left(x+\frac{1}{3}\right)=3x+1 द्वारा भाग गर्नुहोस्। परिणाम 0 बराबर आउने गरी समीकरणलाई समाधान गर्नुहोस्।
x=\frac{-1±\sqrt{1^{2}-4\times 1\left(-1\right)}}{2}
ax^{2}+bx+c=0 ढाँचाका सबै समीकरणहरूलाई क्वाड्रेटिक सूत्र प्रयोग गरी समाधन गर्न सकिन्छ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। क्वाड्रेटिक सूत्रमा a लाई 1 ले, b लाई 1 ले, र c लाई -1 ले प्रतिस्थापन गर्नुहोस्।
x=\frac{-1±\sqrt{5}}{2}
हिसाब गर्नुहोस्।
x=\frac{-\sqrt{5}-1}{2} x=\frac{\sqrt{5}-1}{2}
± प्लस र ± माइनस हुँदा समीकरण x^{2}+x-1=0 लाई समाधान गर्नुहोस्।
x=-\frac{1}{3} x=\frac{-\sqrt{5}-1}{2} x=\frac{\sqrt{5}-1}{2}
फेला परेका सबै समाधानहरूलाई सूचीबद्ध गर्नुहोस्।