मुख्य सामग्रीमा स्किप गर्नुहोस्
x को लागि हल गर्नुहोस्
Tick mark Image
ग्राफ

वेब खोजीबाट समान समस्याहरू

साझेदारी गर्नुहोस्

x\left(3x-5\right)=0
x को गुणन खण्ड निकाल्नुहोस्।
x=0 x=\frac{5}{3}
समीकरणको समाधान पत्ता लगाउन, x=0 र 3x-5=0 को समाधान गर्नुहोस्।
3x^{2}-5x=0
ax^{2}+bx+c=0 रूपका सबै समीकरणहरू वर्ग सूत्र: \frac{-b±\sqrt{b^{2}-4ac}}{2a} प्रयोग गरेर हल गर्न सकिन्छ। एउटा, ± जोड हँदा र अर्को घटाउ हुँदा वर्ग सूत्रले दुईवटा समाधानहरू दिन्छ।
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}}}{2\times 3}
यो समीकरण मानक ढाँचामा छ: ax^{2}+bx+c=0। वर्ग सूत्र \frac{-b±\sqrt{b^{2}-4ac}}{2a} मा a लाई 3 ले, b लाई -5 ले र c लाई 0 ले प्रतिस्थापन गर्नुहोस्।
x=\frac{-\left(-5\right)±5}{2\times 3}
\left(-5\right)^{2} को वर्गमूल निकाल्नुहोस्।
x=\frac{5±5}{2\times 3}
-5 विपरीत 5हो।
x=\frac{5±5}{6}
2 लाई 3 पटक गुणन गर्नुहोस्।
x=\frac{10}{6}
अब ± प्लस मानेर x=\frac{5±5}{6} समीकरणलाई हल गर्नुहोस्। 5 मा 5 जोड्नुहोस्
x=\frac{5}{3}
2 लाई झिकेर र रद्द गरेर, भिनन \frac{10}{6} लाई तल्लो टर्ममा घटाउनुहोस्।
x=\frac{0}{6}
अब ± माइनस मानेर x=\frac{5±5}{6} समीकरणलाई हल गर्नुहोस्। 5 बाट 5 घटाउनुहोस्।
x=0
0 लाई 6 ले भाग गर्नुहोस्।
x=\frac{5}{3} x=0
अब समिकरण समाधान भएको छ।
3x^{2}-5x=0
यो जस्ता वर्ग समीकरणहरूको वर्गलाई पूरा गरेर यिनीहरू हल हुन सक्छन्। वर्गलाई पूरा गर्नको लागि, समीकरण सुरुमा x^{2}+bx=c को रूपमा हुनुपर्छ।
\frac{3x^{2}-5x}{3}=\frac{0}{3}
दुबैतिर 3 ले भाग गर्नुहोस्।
x^{2}-\frac{5}{3}x=\frac{0}{3}
3 द्वारा भाग गर्नाले 3 द्वारा गुणा गरिएकोलाई फिर्ता गर्दछ।
x^{2}-\frac{5}{3}x=0
0 लाई 3 ले भाग गर्नुहोस्।
x^{2}-\frac{5}{3}x+\left(-\frac{5}{6}\right)^{2}=\left(-\frac{5}{6}\right)^{2}
2 द्वारा -\frac{5}{6} प्राप्त गर्न x पदको गुणाङ्कलाई -\frac{5}{3} ले भाग गर्नुहोस्। त्यसपछि -\frac{5}{6} को वर्गलाई समीकरणको दुबैतिर जोड्नुहोस्। यो चरणले समीकरणको बायाँ भागलाई पूर्ण वर्ग बनाउँछ।
x^{2}-\frac{5}{3}x+\frac{25}{36}=\frac{25}{36}
भिन्नको अंश र हर दुबैलाई वर्ग गरेर -\frac{5}{6} लाई वर्ग गर्नुहोस्।
\left(x-\frac{5}{6}\right)^{2}=\frac{25}{36}
कारक x^{2}-\frac{5}{3}x+\frac{25}{36}। सामान्यतया, यदि x^{2}+bx+c एक उचित वर्ग हो भने यसलाई \left(x+\frac{b}{2}\right)^{2}को रूपमा कारक गर्न सकिन्छ।
\sqrt{\left(x-\frac{5}{6}\right)^{2}}=\sqrt{\frac{25}{36}}
समीकरणको दुबैतिरको वर्गमूल निकाल्नुहोस्।
x-\frac{5}{6}=\frac{5}{6} x-\frac{5}{6}=-\frac{5}{6}
सरल गर्नुहोस्।
x=\frac{5}{3} x=0
समीकरणको दुबैतिर \frac{5}{6} जोड्नुहोस्।