मुख्य सामग्रीमा स्किप गर्नुहोस्
x को लागि हल गर्नुहोस्
Tick mark Image
ग्राफ

वेब खोजीबाट समान समस्याहरू

साझेदारी गर्नुहोस्

3x^{2}+9x+4=0
ax^{2}+bx+c=0 रूपका सबै समीकरणहरू वर्ग सूत्र: \frac{-b±\sqrt{b^{2}-4ac}}{2a} प्रयोग गरेर हल गर्न सकिन्छ। एउटा, ± जोड हँदा र अर्को घटाउ हुँदा वर्ग सूत्रले दुईवटा समाधानहरू दिन्छ।
x=\frac{-9±\sqrt{9^{2}-4\times 3\times 4}}{2\times 3}
यो समीकरण मानक ढाँचामा छ: ax^{2}+bx+c=0। वर्ग सूत्र \frac{-b±\sqrt{b^{2}-4ac}}{2a} मा a लाई 3 ले, b लाई 9 ले र c लाई 4 ले प्रतिस्थापन गर्नुहोस्।
x=\frac{-9±\sqrt{81-4\times 3\times 4}}{2\times 3}
9 वर्ग गर्नुहोस्।
x=\frac{-9±\sqrt{81-12\times 4}}{2\times 3}
-4 लाई 3 पटक गुणन गर्नुहोस्।
x=\frac{-9±\sqrt{81-48}}{2\times 3}
-12 लाई 4 पटक गुणन गर्नुहोस्।
x=\frac{-9±\sqrt{33}}{2\times 3}
-48 मा 81 जोड्नुहोस्
x=\frac{-9±\sqrt{33}}{6}
2 लाई 3 पटक गुणन गर्नुहोस्।
x=\frac{\sqrt{33}-9}{6}
अब ± प्लस मानेर x=\frac{-9±\sqrt{33}}{6} समीकरणलाई हल गर्नुहोस्। \sqrt{33} मा -9 जोड्नुहोस्
x=\frac{\sqrt{33}}{6}-\frac{3}{2}
-9+\sqrt{33} लाई 6 ले भाग गर्नुहोस्।
x=\frac{-\sqrt{33}-9}{6}
अब ± माइनस मानेर x=\frac{-9±\sqrt{33}}{6} समीकरणलाई हल गर्नुहोस्। -9 बाट \sqrt{33} घटाउनुहोस्।
x=-\frac{\sqrt{33}}{6}-\frac{3}{2}
-9-\sqrt{33} लाई 6 ले भाग गर्नुहोस्।
x=\frac{\sqrt{33}}{6}-\frac{3}{2} x=-\frac{\sqrt{33}}{6}-\frac{3}{2}
अब समिकरण समाधान भएको छ।
3x^{2}+9x+4=0
यो जस्ता वर्ग समीकरणहरूको वर्गलाई पूरा गरेर यिनीहरू हल हुन सक्छन्। वर्गलाई पूरा गर्नको लागि, समीकरण सुरुमा x^{2}+bx=c को रूपमा हुनुपर्छ।
3x^{2}+9x+4-4=-4
समीकरणको दुबैतिरबाट 4 घटाउनुहोस्।
3x^{2}+9x=-4
4 लाई आफैबाट घटाउनाले 0 बाँकी रहन्छ।
\frac{3x^{2}+9x}{3}=-\frac{4}{3}
दुबैतिर 3 ले भाग गर्नुहोस्।
x^{2}+\frac{9}{3}x=-\frac{4}{3}
3 द्वारा भाग गर्नाले 3 द्वारा गुणा गरिएकोलाई फिर्ता गर्दछ।
x^{2}+3x=-\frac{4}{3}
9 लाई 3 ले भाग गर्नुहोस्।
x^{2}+3x+\left(\frac{3}{2}\right)^{2}=-\frac{4}{3}+\left(\frac{3}{2}\right)^{2}
2 द्वारा \frac{3}{2} प्राप्त गर्न x पदको गुणाङ्कलाई 3 ले भाग गर्नुहोस्। त्यसपछि \frac{3}{2} को वर्गलाई समीकरणको दुबैतिर जोड्नुहोस्। यो चरणले समीकरणको बायाँ भागलाई पूर्ण वर्ग बनाउँछ।
x^{2}+3x+\frac{9}{4}=-\frac{4}{3}+\frac{9}{4}
भिन्नको अंश र हर दुबैलाई वर्ग गरेर \frac{3}{2} लाई वर्ग गर्नुहोस्।
x^{2}+3x+\frac{9}{4}=\frac{11}{12}
साझा हर फेला पारेर तथा अंशहरूलाई जोडेर -\frac{4}{3} लाई \frac{9}{4} मा जोड्नुहोस्। त्यसपछि सम्भव भएमा भिन्नलाई न्यूनतम पदमा झार्नुहोस्।
\left(x+\frac{3}{2}\right)^{2}=\frac{11}{12}
कारक x^{2}+3x+\frac{9}{4}। सामान्यतया, यदि x^{2}+bx+c एक उचित वर्ग हो भने यसलाई \left(x+\frac{b}{2}\right)^{2}को रूपमा कारक गर्न सकिन्छ।
\sqrt{\left(x+\frac{3}{2}\right)^{2}}=\sqrt{\frac{11}{12}}
समीकरणको दुबैतिरको वर्गमूल निकाल्नुहोस्।
x+\frac{3}{2}=\frac{\sqrt{33}}{6} x+\frac{3}{2}=-\frac{\sqrt{33}}{6}
सरल गर्नुहोस्।
x=\frac{\sqrt{33}}{6}-\frac{3}{2} x=-\frac{\sqrt{33}}{6}-\frac{3}{2}
समीकरणको दुबैतिरबाट \frac{3}{2} घटाउनुहोस्।