x को लागि हल गर्नुहोस्
x=\frac{\sqrt{6}}{3}+1\approx 1.816496581
x=-\frac{\sqrt{6}}{3}+1\approx 0.183503419
ग्राफ
साझेदारी गर्नुहोस्
क्लिपबोर्डमा प्रतिलिपि गरियो
3x^{2}-6x+1=0
ax^{2}+bx+c=0 रूपका सबै समीकरणहरू वर्ग सूत्र: \frac{-b±\sqrt{b^{2}-4ac}}{2a} प्रयोग गरेर हल गर्न सकिन्छ। एउटा, ± जोड हँदा र अर्को घटाउ हुँदा वर्ग सूत्रले दुईवटा समाधानहरू दिन्छ।
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 3}}{2\times 3}
यो समीकरण मानक ढाँचामा छ: ax^{2}+bx+c=0। वर्ग सूत्र \frac{-b±\sqrt{b^{2}-4ac}}{2a} मा a लाई 3 ले, b लाई -6 ले र c लाई 1 ले प्रतिस्थापन गर्नुहोस्।
x=\frac{-\left(-6\right)±\sqrt{36-4\times 3}}{2\times 3}
-6 वर्ग गर्नुहोस्।
x=\frac{-\left(-6\right)±\sqrt{36-12}}{2\times 3}
-4 लाई 3 पटक गुणन गर्नुहोस्।
x=\frac{-\left(-6\right)±\sqrt{24}}{2\times 3}
-12 मा 36 जोड्नुहोस्
x=\frac{-\left(-6\right)±2\sqrt{6}}{2\times 3}
24 को वर्गमूल निकाल्नुहोस्।
x=\frac{6±2\sqrt{6}}{2\times 3}
-6 विपरीत 6हो।
x=\frac{6±2\sqrt{6}}{6}
2 लाई 3 पटक गुणन गर्नुहोस्।
x=\frac{2\sqrt{6}+6}{6}
अब ± प्लस मानेर x=\frac{6±2\sqrt{6}}{6} समीकरणलाई हल गर्नुहोस्। 2\sqrt{6} मा 6 जोड्नुहोस्
x=\frac{\sqrt{6}}{3}+1
6+2\sqrt{6} लाई 6 ले भाग गर्नुहोस्।
x=\frac{6-2\sqrt{6}}{6}
अब ± माइनस मानेर x=\frac{6±2\sqrt{6}}{6} समीकरणलाई हल गर्नुहोस्। 6 बाट 2\sqrt{6} घटाउनुहोस्।
x=-\frac{\sqrt{6}}{3}+1
6-2\sqrt{6} लाई 6 ले भाग गर्नुहोस्।
x=\frac{\sqrt{6}}{3}+1 x=-\frac{\sqrt{6}}{3}+1
अब समिकरण समाधान भएको छ।
3x^{2}-6x+1=0
यो जस्ता वर्ग समीकरणहरूको वर्गलाई पूरा गरेर यिनीहरू हल हुन सक्छन्। वर्गलाई पूरा गर्नको लागि, समीकरण सुरुमा x^{2}+bx=c को रूपमा हुनुपर्छ।
3x^{2}-6x+1-1=-1
समीकरणको दुबैतिरबाट 1 घटाउनुहोस्।
3x^{2}-6x=-1
1 लाई आफैबाट घटाउनाले 0 बाँकी रहन्छ।
\frac{3x^{2}-6x}{3}=-\frac{1}{3}
दुबैतिर 3 ले भाग गर्नुहोस्।
x^{2}+\left(-\frac{6}{3}\right)x=-\frac{1}{3}
3 द्वारा भाग गर्नाले 3 द्वारा गुणा गरिएकोलाई फिर्ता गर्दछ।
x^{2}-2x=-\frac{1}{3}
-6 लाई 3 ले भाग गर्नुहोस्।
x^{2}-2x+1=-\frac{1}{3}+1
2 द्वारा -1 प्राप्त गर्न x पदको गुणाङ्कलाई -2 ले भाग गर्नुहोस्। त्यसपछि -1 को वर्गलाई समीकरणको दुबैतिर जोड्नुहोस्। यो चरणले समीकरणको बायाँ भागलाई पूर्ण वर्ग बनाउँछ।
x^{2}-2x+1=\frac{2}{3}
1 मा -\frac{1}{3} जोड्नुहोस्
\left(x-1\right)^{2}=\frac{2}{3}
x^{2}-2x+1 गुणनखण्ड साधारणतया, x^{2}+bx+c पूर्ण वर्ग हँदा यो \left(x+\frac{b}{2}\right)^{2} को रूपमा सधै गुणनखण्डीत हुन सक्छ।
\sqrt{\left(x-1\right)^{2}}=\sqrt{\frac{2}{3}}
समीकरणको दुबैतिरको वर्गमूल निकाल्नुहोस्।
x-1=\frac{\sqrt{6}}{3} x-1=-\frac{\sqrt{6}}{3}
सरल गर्नुहोस्।
x=\frac{\sqrt{6}}{3}+1 x=-\frac{\sqrt{6}}{3}+1
समीकरणको दुबैतिर 1 जोड्नुहोस्।
उदाहरणहरू[सम्पादन गर्ने]
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिति
4 \sin \theta \cos \theta = 2 \sin \theta
रैखिक समीकरण
y = 3x + 4
अंकगणित
699 * 533
म्याट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालिक समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
भिन्नता
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमाहरू
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}