मुख्य सामग्रीमा स्किप गर्नुहोस्
x को लागि हल गर्नुहोस्
Tick mark Image
ग्राफ

वेब खोजीबाट समान समस्याहरू

साझेदारी गर्नुहोस्

x^{2}-4x+4=0
दुबैतिर 3 ले भाग गर्नुहोस्।
a+b=-4 ab=1\times 4=4
समीकरणको समाधान गर्न, बायाँ भागलाई समूहमा राखेर फ्याक्टर निकाल्नुहोस्। सर्वप्रथम, बायाँ भागलाई x^{2}+ax+bx+4 को रूपमा पुन: लेख्न आवश्यक हुन्छ। a र b पत्ता लगाउन, समाधान गर्नका लागि प्रणाली सेटअप गर्नुहोस्।
-1,-4 -2,-2
ab सकारात्मक भएको हुनाले, a र b को समान चिन्ह हुन्छ। a+b नकारात्मक भएको हुनाले, a र b दुबै नकारात्मक हुन्छन्। गुणनफल 4 दिने सबै पूर्ण संख्याहरूलाई सूचीबद्ध गर्नुहोस्।
-1-4=-5 -2-2=-4
प्रत्येक जोडीका लागि जोडफल गणना गर्नुहोस्।
a=-2 b=-2
समाधान त्यो जोडी हो जसले जोडफल -4 दिन्छ।
\left(x^{2}-2x\right)+\left(-2x+4\right)
x^{2}-4x+4 लाई \left(x^{2}-2x\right)+\left(-2x+4\right) को रूपमा पुन: लेख्नुहोस्।
x\left(x-2\right)-2\left(x-2\right)
x लाई पहिलो र -2 लाई दोस्रो समूहमा सन्दर्भ लिनुहोस्।
\left(x-2\right)\left(x-2\right)
वितरक गुण प्रयोग गरेर समान टर्म x-2 खण्डिकरण गर्नुहोस्।
\left(x-2\right)^{2}
द्विपदीय वर्गको रूपमा पूर्नलेखन गर्नुहोस्।
x=2
समीकरण समाधान पत्ता लगाउन, x-2=0 को समाधान गर्नुहोस्।
3x^{2}-12x+12=0
ax^{2}+bx+c=0 रूपका सबै समीकरणहरू वर्ग सूत्र: \frac{-b±\sqrt{b^{2}-4ac}}{2a} प्रयोग गरेर हल गर्न सकिन्छ। एउटा, ± जोड हँदा र अर्को घटाउ हुँदा वर्ग सूत्रले दुईवटा समाधानहरू दिन्छ।
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 3\times 12}}{2\times 3}
यो समीकरण मानक ढाँचामा छ: ax^{2}+bx+c=0। वर्ग सूत्र \frac{-b±\sqrt{b^{2}-4ac}}{2a} मा a लाई 3 ले, b लाई -12 ले र c लाई 12 ले प्रतिस्थापन गर्नुहोस्।
x=\frac{-\left(-12\right)±\sqrt{144-4\times 3\times 12}}{2\times 3}
-12 वर्ग गर्नुहोस्।
x=\frac{-\left(-12\right)±\sqrt{144-12\times 12}}{2\times 3}
-4 लाई 3 पटक गुणन गर्नुहोस्।
x=\frac{-\left(-12\right)±\sqrt{144-144}}{2\times 3}
-12 लाई 12 पटक गुणन गर्नुहोस्।
x=\frac{-\left(-12\right)±\sqrt{0}}{2\times 3}
-144 मा 144 जोड्नुहोस्
x=-\frac{-12}{2\times 3}
0 को वर्गमूल निकाल्नुहोस्।
x=\frac{12}{2\times 3}
-12 विपरीत 12हो।
x=\frac{12}{6}
2 लाई 3 पटक गुणन गर्नुहोस्।
x=2
12 लाई 6 ले भाग गर्नुहोस्।
3x^{2}-12x+12=0
यो जस्ता वर्ग समीकरणहरूको वर्गलाई पूरा गरेर यिनीहरू हल हुन सक्छन्। वर्गलाई पूरा गर्नको लागि, समीकरण सुरुमा x^{2}+bx=c को रूपमा हुनुपर्छ।
3x^{2}-12x+12-12=-12
समीकरणको दुबैतिरबाट 12 घटाउनुहोस्।
3x^{2}-12x=-12
12 लाई आफैबाट घटाउनाले 0 बाँकी रहन्छ।
\frac{3x^{2}-12x}{3}=-\frac{12}{3}
दुबैतिर 3 ले भाग गर्नुहोस्।
x^{2}+\left(-\frac{12}{3}\right)x=-\frac{12}{3}
3 द्वारा भाग गर्नाले 3 द्वारा गुणा गरिएकोलाई फिर्ता गर्दछ।
x^{2}-4x=-\frac{12}{3}
-12 लाई 3 ले भाग गर्नुहोस्।
x^{2}-4x=-4
-12 लाई 3 ले भाग गर्नुहोस्।
x^{2}-4x+\left(-2\right)^{2}=-4+\left(-2\right)^{2}
2 द्वारा -2 प्राप्त गर्न x पदको गुणाङ्कलाई -4 ले भाग गर्नुहोस्। त्यसपछि -2 को वर्गलाई समीकरणको दुबैतिर जोड्नुहोस्। यो चरणले समीकरणको बायाँ भागलाई पूर्ण वर्ग बनाउँछ।
x^{2}-4x+4=-4+4
-2 वर्ग गर्नुहोस्।
x^{2}-4x+4=0
4 मा -4 जोड्नुहोस्
\left(x-2\right)^{2}=0
x^{2}-4x+4 गुणनखण्ड साधारणतया, x^{2}+bx+c पूर्ण वर्ग हँदा यो \left(x+\frac{b}{2}\right)^{2} को रूपमा सधै गुणनखण्डीत हुन सक्छ।
\sqrt{\left(x-2\right)^{2}}=\sqrt{0}
समीकरणको दुबैतिरको वर्गमूल निकाल्नुहोस्।
x-2=0 x-2=0
सरल गर्नुहोस्।
x=2 x=2
समीकरणको दुबैतिर 2 जोड्नुहोस्।
x=2
अब समिकरण समाधान भएको छ। समाधानहरू उही हुन्।